dc.contributor.author |
Zhang, Ch |
en |
dc.contributor.author |
Savaidis, A |
en |
dc.date.accessioned |
2014-03-01T01:18:30Z |
|
dc.date.available |
2014-03-01T01:18:30Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
1526-1492 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15046 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-3242685177&partnerID=40&md5=3fb170a49adf838b438f63b6104f773d |
en |
dc.subject |
3-D Time-domain boundary element method |
en |
dc.subject |
Elastodynamic stress intensity factors |
en |
dc.subject |
Non-hypersingular boundary integral equations |
en |
dc.subject |
Transient elastodynamic crack analysis |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Convolution |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Green's function |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Tensile testing |
en |
dc.subject.other |
Time domain analysis |
en |
dc.subject.other |
Elastodynamic stress intensity factors |
en |
dc.subject.other |
Impact loading |
en |
dc.subject.other |
Non-hypersingular boundary integral equations |
en |
dc.subject.other |
Transient elastodynamics crack analysis |
en |
dc.subject.other |
Cracks |
en |
dc.title |
3-D transient dynamic crack analysis by a novel time-domain BEM |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
A novel non-hypersingular time-domain traction BEM is presented for three-dimensional (3-D) transient elastodynamic crack analysis. The initial-boundary value problem is formulated as a set of non-hypersingular time-domain traction boundary integral equations (BIEs). To solve the time-domain traction BIEs, a time-stepping scheme based on the convolution quadrature formula of Lubich (1988a,b; 1994) for temporal discretization and a collocation method for spatial discretization is adopted. Numerical examples are given for an unbounded solid with a penny-shaped crack under a tensile and shear impact loading. A comparison of the present time-domain BEM with the conventional one shows that the novel time-domain method is much more stable and less sensitive to the choice of the used time-steps. |
en |
heal.publisher |
TECH SCIENCE PRESS |
en |
heal.journalName |
CMES - Computer Modeling in Engineering and Sciences |
en |
dc.identifier.isi |
ISI:000185634200008 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
603 |
en |
dc.identifier.epage |
618 |
en |