HEAL DSpace

A Computer-Aided Diagnostic System to Characterize CT Focal Liver Lesions: Design and Optimization of a Neural Network Classifier

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gletsos, M en
dc.contributor.author Mougiakakou, SG en
dc.contributor.author Matsopoulos, GK en
dc.contributor.author Nikita, KS en
dc.contributor.author Nikita, AS en
dc.contributor.author Kelekis, D en
dc.date.accessioned 2014-03-01T01:18:30Z
dc.date.available 2014-03-01T01:18:30Z
dc.date.issued 2003 en
dc.identifier.issn 1089-7771 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15052
dc.subject Feature selection en
dc.subject Liver CT en
dc.subject Neural networks en
dc.subject Texture features en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematical & Computational Biology en
dc.subject.classification Medical Informatics en
dc.subject.other Biopsy en
dc.subject.other Computer aided design en
dc.subject.other Decision support systems en
dc.subject.other Feature extraction en
dc.subject.other Gastroenterology en
dc.subject.other Genetic algorithms en
dc.subject.other Mammography en
dc.subject.other Medical imaging en
dc.subject.other Neural networks en
dc.subject.other Optimization en
dc.subject.other Pathology en
dc.subject.other Statistical methods en
dc.subject.other Tumors en
dc.subject.other Feature selection en
dc.subject.other Liver computed tomography (CT) en
dc.subject.other Texture features en
dc.subject.other Computerized tomography en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other automated pattern recognition en
dc.subject.other clinical trial en
dc.subject.other comparative study en
dc.subject.other computer assisted diagnosis en
dc.subject.other computer assisted tomography en
dc.subject.other controlled clinical trial en
dc.subject.other controlled study en
dc.subject.other cyst en
dc.subject.other hemangioma en
dc.subject.other human en
dc.subject.other image quality en
dc.subject.other liver en
dc.subject.other liver cell carcinoma en
dc.subject.other liver tumor en
dc.subject.other methodology en
dc.subject.other pathology en
dc.subject.other radiography en
dc.subject.other reproducibility en
dc.subject.other sensitivity and specificity en
dc.subject.other validation study en
dc.subject.other Algorithms en
dc.subject.other Carcinoma, Hepatocellular en
dc.subject.other Cysts en
dc.subject.other Hemangioma en
dc.subject.other Humans en
dc.subject.other Liver en
dc.subject.other Liver Neoplasms en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Pattern Recognition, Automated en
dc.subject.other Radiographic Image Enhancement en
dc.subject.other Radiographic Image Interpretation, Computer-Assisted en
dc.subject.other Reproducibility of Results en
dc.subject.other Sensitivity and Specificity en
dc.subject.other Tomography, X-Ray Computed en
dc.title A Computer-Aided Diagnostic System to Characterize CT Focal Liver Lesions: Design and Optimization of a Neural Network Classifier en
heal.type journalArticle en
heal.identifier.primary 10.1109/TITB.2003.813793 en
heal.identifier.secondary http://dx.doi.org/10.1109/TITB.2003.813793 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or ""other disease."" The third NN classifies ""other disease"" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Information Technology in Biomedicine en
dc.identifier.doi 10.1109/TITB.2003.813793 en
dc.identifier.isi ISI:000185338100002 en
dc.identifier.volume 7 en
dc.identifier.issue 3 en
dc.identifier.spage 153 en
dc.identifier.epage 162 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής