dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Alexandridis, A |
en |
dc.contributor.author |
Bafas, G |
en |
dc.date.accessioned |
2014-03-01T01:18:31Z |
|
dc.date.available |
2014-03-01T01:18:31Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0925-2312 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15060 |
|
dc.subject |
Model selection |
en |
dc.subject |
Radial basis function networks |
en |
dc.subject |
Training algorithms |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Personnel training |
en |
dc.subject.other |
Subtractive clustering |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
accuracy |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
analytic method |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
cluster analysis |
en |
dc.subject.other |
learning |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
nonlinear system |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
statistical model |
en |
dc.subject.other |
time |
en |
dc.subject.other |
training |
en |
dc.title |
A fast training algorithm for RBF networks based on subtractive clustering |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0925-2312(03)00342-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0925-2312(03)00342-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
A new algorithm for training radial basis function neural networks is presented in this paper. The algorithm, which is based on the subtractive clustering technique, has a number of advantages compared to the traditional learning algorithms, including faster training times and more accurate predictions. Due to these advantages the method proves suitable for developing models for complex nonlinear systems. (C) 2003 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Neurocomputing |
en |
dc.identifier.doi |
10.1016/S0925-2312(03)00342-4 |
en |
dc.identifier.isi |
ISI:000181912600034 |
en |
dc.identifier.volume |
51 |
en |
dc.identifier.spage |
501 |
en |
dc.identifier.epage |
505 |
en |