HEAL DSpace

A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lahanas, M en
dc.contributor.author Baltas, D en
dc.contributor.author Zamboglou, N en
dc.date.accessioned 2014-03-01T01:18:32Z
dc.date.available 2014-03-01T01:18:32Z
dc.date.issued 2003 en
dc.identifier.issn 0031-9155 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15065
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Radiology, Nuclear Medicine & Medical Imaging en
dc.subject.other Evolutionary algorithms en
dc.subject.other Gradient methods en
dc.subject.other Optimization en
dc.subject.other Simulated annealing en
dc.subject.other Brachytherapy en
dc.subject.other Biomedical engineering en
dc.subject.other algorithm en
dc.subject.other anatomy en
dc.subject.other article en
dc.subject.other brachytherapy en
dc.subject.other controlled study en
dc.subject.other decision making en
dc.subject.other histogram en
dc.subject.other implant en
dc.subject.other priority journal en
dc.subject.other process optimization en
dc.subject.other prostate en
dc.subject.other radiation dose en
dc.subject.other radiation dose distribution en
dc.subject.other simulation en
dc.subject.other statistical analysis en
dc.subject.other Algorithms en
dc.subject.other Brachytherapy en
dc.subject.other Dose-Response Relationship, Radiation en
dc.subject.other Humans en
dc.subject.other Male en
dc.subject.other Models, Biological en
dc.subject.other Organ Specificity en
dc.subject.other Prostatic Neoplasms en
dc.subject.other Quality Control en
dc.subject.other Radiation Injuries en
dc.subject.other Radiometry en
dc.subject.other Radiotherapy Dosage en
dc.subject.other Radiotherapy Planning, Computer-Assisted en
dc.subject.other Sensitivity and Specificity en
dc.title A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy en
heal.type journalArticle en
heal.identifier.primary 10.1088/0031-9155/48/3/309 en
heal.identifier.secondary http://dx.doi.org/10.1088/0031-9155/48/3/309 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Physics in Medicine and Biology en
dc.identifier.doi 10.1088/0031-9155/48/3/309 en
dc.identifier.isi ISI:000181367300009 en
dc.identifier.volume 48 en
dc.identifier.issue 3 en
dc.identifier.spage 399 en
dc.identifier.epage 415 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής