HEAL DSpace

A learning strategy for paging in mobile environments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koukoutsidis, IZ en
dc.contributor.author Demestichas, PP en
dc.contributor.author Theologou, ME en
dc.date.accessioned 2014-03-01T01:18:32Z
dc.date.available 2014-03-01T01:18:32Z
dc.date.issued 2003 en
dc.identifier.issn 15308669 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15067
dc.subject Location area en
dc.subject Movement area en
dc.subject Online algorithm en
dc.subject Paging cost en
dc.subject Reinforcement learning en
dc.subject Tracking mobile users en
dc.subject.other Algorithms en
dc.subject.other Computational methods en
dc.subject.other Heuristic methods en
dc.subject.other Learning systems en
dc.subject.other Probability distributions en
dc.subject.other Random processes en
dc.subject.other Tracking (position) en
dc.subject.other Wireless telecommunication systems en
dc.subject.other Location areas (LA) en
dc.subject.other Movement areas en
dc.subject.other Online algorithm en
dc.subject.other Paging cost en
dc.subject.other Reinforcement learning en
dc.subject.other Tracking mobile users en
dc.subject.other Mobile computing en
dc.title A learning strategy for paging in mobile environments en
heal.type journalArticle en
heal.identifier.primary 10.1002/wcm.120 en
heal.identifier.secondary http://dx.doi.org/10.1002/wcm.120 en
heal.publicationDate 2003 en
heal.abstract The essence of designing a good paging strategy is to incorporate the user mobility characteristics in a predictive mechanism that reduces the average paging cost with as little computational effort as possible. In this scope, we introduce a novel paging scheme based on the concept of reinforcement learning. Learning endows the paging mechanism with the predictive power necessary to determine a mobile terminal's position, without having to extract a location probability distribution for each specific user. The proposed algorithm is compared against a heuristic randomized learning strategy akin to reinforcement learning, that we invented for this purpose, and performs better than the case where no learning is used at all. It is shown that if the user normally moves only among a fraction of cells in the location area, significant savings can be achieved over the randomized strategy, without excessive time to train the network. Copyright © 2003 John Wiley & Sons, Ltd. en
heal.journalName Wireless Communications and Mobile Computing en
dc.identifier.doi 10.1002/wcm.120 en
dc.identifier.volume 3 en
dc.identifier.issue 8 en
dc.identifier.spage 975 en
dc.identifier.epage 985 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής