HEAL DSpace

A modular approach to facial feature segmentation on real sequences

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Votsis, GN en
dc.contributor.author Drosopoulos, AI en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T01:18:32Z
dc.date.available 2014-03-01T01:18:32Z
dc.date.issued 2003 en
dc.identifier.issn 0923-5965 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15072
dc.subject Active contours en
dc.subject Dominant angle en
dc.subject Facial feature extraction en
dc.subject Feature labeling en
dc.subject Optimal segmentation en
dc.subject Seed growing en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Animation en
dc.subject.other Face recognition en
dc.subject.other Feature extraction en
dc.subject.other Fuzzy sets en
dc.subject.other Optimization en
dc.subject.other Feature labeling en
dc.subject.other Image segmentation en
dc.title A modular approach to facial feature segmentation on real sequences en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0923-5965(02)00103-0 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0923-5965(02)00103-0 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In this paper a modular approach of gradual confidence for facial feature extraction over real video frames is presented. The problem is being dealt under general imaging conditions and soft presumptions. The proposed methodology copes with large variations in the appearance of diverse subjects, as well as of the same subject in various instances within real video sequences. Areas of the face that statistically seem to be outstanding form an initial set of regions that are likely to include information about the features of interest. Enhancement of these regions produces closed objects, which reveal - through the use of a fuzzy system - a dominant angle, i.e. the facial rotation angle. The object set is restricted using the dominant angle. An exhaustive search is performed among all candidate objects, matching a pattern that models the relative position of the eyes and the mouth. Labeling of the winner features can be used to evaluate the features extracted and provide feedback in an iterative framework. A subset of the MPEG-4 facial definition or facial animation parameter set can be obtained. This gradual feature revelation is performed under optimization for each step, producing a posteriori knowledge about the face and leading to a step-by-step visualization of the features in search. © 2002 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Signal Processing: Image Communication en
dc.identifier.doi 10.1016/S0923-5965(02)00103-0 en
dc.identifier.isi ISI:000181043800005 en
dc.identifier.volume 18 en
dc.identifier.issue 1 en
dc.identifier.spage 67 en
dc.identifier.epage 89 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής