HEAL DSpace

A multivariate state space approach for urban traffic flow modeling and prediction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stathopoulos, A en
dc.contributor.author Karlaftis, MG en
dc.date.accessioned 2014-03-01T01:18:32Z
dc.date.available 2014-03-01T01:18:32Z
dc.date.issued 2003 en
dc.identifier.issn 0968-090X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15073
dc.subject Multivariate time series en
dc.subject Short-term predictions en
dc.subject Traffic flow en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Real time systems en
dc.subject.other State space methods en
dc.subject.other Time series analysis en
dc.subject.other Traffic control en
dc.subject.other Traffic congestion en
dc.subject.other Transportation en
dc.subject.other modeling en
dc.subject.other multivariate analysis en
dc.subject.other planning method en
dc.subject.other traffic management en
dc.subject.other urban planning en
dc.title A multivariate state space approach for urban traffic flow modeling and prediction en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0968-090X(03)00004-4 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0968-090X(03)00004-4 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Urban traffic congestion is one of the most severe problems of everyday life in Metropolitan areas. In an effort to deal with this problem, intelligent transportation systems (ITS) technologies have concentrated in recent years on dealing with urban congestion. One of the most critical aspects of ITS success is the provision of accurate real-time information and short-term predictions of traffic parameters such as traffic volumes, travel speeds and occupancies. The present paper concentrates on developing flexible and explicitly multivariate time-series state space models using core urban area loop detector data. Using 3-min volume measurements from urban arterial streets near downtown Athens, models were developed that feed on data from upstream detectors to improve on the predictions of downstream locations. The results clearly suggest that different model specifications are appropriate for different time periods of the day. Further, it also appears that the use of multivariate state space models improves on the prediction accuracy over univariate time series ones. (C) 2003 Elsevier Science Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Transportation Research Part C: Emerging Technologies en
dc.identifier.doi 10.1016/S0968-090X(03)00004-4 en
dc.identifier.isi ISI:000183237700002 en
dc.identifier.volume 11 en
dc.identifier.issue 2 en
dc.identifier.spage 121 en
dc.identifier.epage 135 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής