HEAL DSpace

A neural network approach for the correlation of exhaust emissions from a diesel engine with diesel fuel properties

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karonis, D en
dc.contributor.author Lois, E en
dc.contributor.author Zannikos, F en
dc.contributor.author Alexandridis, A en
dc.contributor.author Sarimveis, H en
dc.date.accessioned 2014-03-01T01:18:32Z
dc.date.available 2014-03-01T01:18:32Z
dc.date.issued 2003 en
dc.identifier.issn 0887-0624 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15074
dc.subject Diesel Engine en
dc.subject Exhaust Emissions en
dc.subject Diesel Fuel en
dc.subject Neural Network en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Chemical en
dc.subject.other Cetane en
dc.subject.other Distillation curve en
dc.subject.other Exhaust emissions en
dc.subject.other Kinematic viscosity en
dc.subject.other Single cylinder diesel engine en
dc.subject.other Carbon monoxide en
dc.subject.other Density (specific gravity) en
dc.subject.other Diesel fuels en
dc.subject.other Distillation en
dc.subject.other Gas emissions en
dc.subject.other Hydrocarbons en
dc.subject.other Neural networks en
dc.subject.other Nitrogen oxides en
dc.subject.other Particles (particulate matter) en
dc.subject.other Sulfur en
dc.subject.other Diesel engines en
dc.title A neural network approach for the correlation of exhaust emissions from a diesel engine with diesel fuel properties en
heal.type journalArticle en
heal.identifier.primary 10.1021/ef020296p en
heal.identifier.secondary http://dx.doi.org/10.1021/ef020296p en
heal.language English en
heal.publicationDate 2003 en
heal.abstract This paper presents expressions correlating the exhaust emissions from a single-cylinder diesel engine with some of the most important properties of the fuels used, using a neural network approach. The exhaust emissions measured were carbon monoxide, hydrocarbons, nitrogen oxides, and particulate matter. The experiments were performed using a matrix of 59 fuels. The cetane number of the fuels covered the range 42-58, the density varied between 0.840 and 0.860 g/mL, and the sulfur content from 0.05 to 0.20 wt %. The predictions were based on specific points of the distillation curve, the cetane number, density, and kinematic viscosity of the fuels. In the case of particulate matter emissions, sulfur content was also employed. The predictions obtained were very good for all the emissions considered. The aromatic content was not used as a predictor variable, because it was found to have a strong inter-correlation with the cetane number, density, and two specific points of the distillation curve, the 50% and the 90% recovery point. en
heal.publisher AMER CHEMICAL SOC en
heal.journalName Energy and Fuels en
dc.identifier.doi 10.1021/ef020296p en
dc.identifier.isi ISI:000185462200018 en
dc.identifier.volume 17 en
dc.identifier.issue 5 en
dc.identifier.spage 1259 en
dc.identifier.epage 1265 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής