HEAL DSpace

A novel general methodology for studying and remedying finite precision error with application in Kalman filtering

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papaodysseus, C en
dc.contributor.author Alexiou, C en
dc.contributor.author Panagopoulos, Th en
dc.contributor.author Roussopoulos, G en
dc.contributor.author Kravaritis, D en
dc.date.accessioned 2014-03-01T01:18:33Z
dc.date.available 2014-03-01T01:18:33Z
dc.date.issued 2003 en
dc.identifier.issn 1436-3240 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15078
dc.subject Finite precision error en
dc.subject Kalman type algorithms instability en
dc.subject Kalman type algorithms stabilization en
dc.subject Quantization error en
dc.subject RLS algorithms en
dc.subject.classification Engineering, Environmental en
dc.subject.classification Engineering, Civil en
dc.subject.classification Environmental Sciences en
dc.subject.classification Statistics & Probability en
dc.subject.classification Water Resources en
dc.subject.other error correction en
dc.subject.other Kalman filter en
dc.subject.other least squares method en
dc.title A novel general methodology for studying and remedying finite precision error with application in Kalman filtering en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00477-002-0116-2 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00477-002-0116-2 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Least squares (LS) techniques, like Kalman filtering, are widely used in environmental science and engineering. In this paper, a new general approach is introduced for the study of the generation, propagation and accumulation of the quantization error in any algorithm. This methodology employs a number of fundamental propositions demonstrating the way the four operations addition, multiplication, division and subtraction, influence quantization error generation and transmission. Using these, one can obtain knowledge of the exact number of erroneous digits with which all quantities of any algorithm are computed at each step of it. This methodology offers understanding of the actual cause of the generation and propagation of finite precision error in any computational scheme. Application of this approach to all Kalman type LS algorithms shows that not all their formulas are equivalent concerning the quantization error effects. More specifically, few generate the greater amount of quantization error. Finally, a stabilization procedure, applicable to all Kalman type algorithms, is introduced that renders all these algorithms very robust. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Stochastic Environmental Research and Risk Assessment en
dc.identifier.doi 10.1007/s00477-002-0116-2 en
dc.identifier.isi ISI:000183840000001 en
dc.identifier.volume 17 en
dc.identifier.issue 1-2 en
dc.identifier.spage 1 en
dc.identifier.epage 19 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής