HEAL DSpace

A weak Legendre collocation spectral method for the solution of the incompressible Navier-Stokes equations in unstructured quadrilateral subdomains

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kondaxakis, D en
dc.contributor.author Tsangaris, S en
dc.date.accessioned 2014-03-01T01:18:34Z
dc.date.available 2014-03-01T01:18:34Z
dc.date.issued 2003 en
dc.identifier.issn 0021-9991 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15098
dc.subject weak collocation legendre method en
dc.subject domain decomposition en
dc.subject influence matrix en
dc.subject axisymmetric simulation en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Physics, Mathematical en
dc.subject.other MULTIDOMAIN METHOD en
dc.subject.other TURBULENT FLOWS en
dc.subject.other ELEMENT METHOD en
dc.subject.other NUMERICAL-SIMULATION en
dc.subject.other CHEBYSHEV en
dc.subject.other GEOMETRIES en
dc.subject.other FORMULATION en
dc.subject.other LAMINAR en
dc.subject.other DOMAIN en
dc.subject.other TIME en
dc.title A weak Legendre collocation spectral method for the solution of the incompressible Navier-Stokes equations in unstructured quadrilateral subdomains en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0021-9991(03)00350-4 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0021-9991(03)00350-4 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract A weak Legendre spectral method is developed for the solution of the primitive variable formulation of the unsteady incompressible Navier-Stokes equations, in general two-dimensional and axisymmetric geometries. A semi-implicit projection method is utilized for the temporal approximation and for decoupling the velocity field from the pressure field. A series of elliptic boundary value problems arises from the above procedure, each of which is spatially discretized by a weak collocation method in multiple nonoverlapping subdomains. In particular, a modified variational formulation of the partial differential equations is presented which leads, after discretization, to a weak multidomain approximation of the corresponding problems. A weak formalism for the influence matrix technique is also developed, which is consistent with the spatial discretization scheme and successfully separate the equations for the internal nodes from the ones governing the interface unknowns. A method of dealing with the singularity problem faced by the weak formulation at axisymmetric problems is proposed, while a combination of direct methods is studied for tackling effectively the linear algebraic systems resulting from the full discretization. Exponential convergence is demonstrated for a plethora of Stokes and Navier-Stokes simulations. (C) 2003 Elsevier B.V. All rights reserved. en
heal.publisher ACADEMIC PRESS INC ELSEVIER SCIENCE en
heal.journalName JOURNAL OF COMPUTATIONAL PHYSICS en
dc.identifier.doi 10.1016/S0021-9991(03)00350-4 en
dc.identifier.isi ISI:000186710700007 en
dc.identifier.volume 192 en
dc.identifier.issue 1 en
dc.identifier.spage 124 en
dc.identifier.epage 156 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής