dc.contributor.author |
Alexandridis, A |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Bafas, G |
en |
dc.date.accessioned |
2014-03-01T01:18:35Z |
|
dc.date.available |
2014-03-01T01:18:35Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
15707946 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15102 |
|
dc.subject |
Adaptive Control |
en |
dc.subject |
Fuzzy Clustering |
en |
dc.subject |
Nonlinear Model Predictive Control |
en |
dc.subject |
Radial Basis Function |
en |
dc.subject |
rbf network |
en |
dc.subject |
Radial Basis Function Neural Network |
en |
dc.subject |
Time Varying |
en |
dc.title |
Adaptive control of continuous pulp digesters based on radial basis function neural network models |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S1570-7946(03)80247-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S1570-7946(03)80247-X |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper, an adaptive nonlinear Model Predictive Control (MPC) configuration is proposed, where the model used for predicting the future behavior of the process is a discrete dynamic Radial Basis Function (RBF) network. The innovative fuzzy clustering algorithm allows the continuous and easy adaptation of the model, thus making it suitable for controlling time-varying processes, such as the continuous pulp digester. © 2003 Elsevier B.V. All rights reserved. |
en |
heal.journalName |
Computer Aided Chemical Engineering |
en |
dc.identifier.doi |
10.1016/S1570-7946(03)80247-X |
en |
dc.identifier.volume |
14 |
en |
dc.identifier.issue |
C |
en |
dc.identifier.spage |
995 |
en |
dc.identifier.epage |
1000 |
en |