HEAL DSpace

An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, AD en
dc.contributor.author Doulamis, ND en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T01:18:37Z
dc.date.available 2014-03-01T01:18:37Z
dc.date.issued 2003 en
dc.identifier.issn 1045-9227 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15114
dc.subject Adaptive Neural Network en
dc.subject Autoregressive Model en
dc.subject Community Networks en
dc.subject Computational Complexity en
dc.subject Digital Video en
dc.subject Estimation Algorithm en
dc.subject Generic Model en
dc.subject High Efficiency en
dc.subject Mpeg Video en
dc.subject Multimedia Services en
dc.subject Network Design en
dc.subject Traffic Characterization en
dc.subject Traffic Model en
dc.subject Traffic Prediction en
dc.subject Internet Protocol en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algorithms en
dc.subject.other Computational complexity en
dc.subject.other Internet en
dc.subject.other Motion pictures en
dc.subject.other Network protocols en
dc.subject.other Telecommunication traffic en
dc.subject.other Video sources en
dc.subject.other Neural networks en
dc.title An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources en
heal.type journalArticle en
heal.identifier.primary 10.1109/TNN.2002.806645 en
heal.identifier.secondary http://dx.doi.org/10.1109/TNN.2002.806645 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates t he network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Neural Networks en
dc.identifier.doi 10.1109/TNN.2002.806645 en
dc.identifier.isi ISI:000180862400014 en
dc.identifier.volume 14 en
dc.identifier.issue 1 en
dc.identifier.spage 150 en
dc.identifier.epage 166 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής