HEAL DSpace

An analytical dosimetry model as a step towards accounting for inhomogeneities and bounded geometries in 192Ir brachytherapy treatment planning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Anagnostopoulos, G en
dc.contributor.author Baltas, D en
dc.contributor.author Karaiskos, P en
dc.contributor.author Pantelis, E en
dc.contributor.author Papagiannis, P en
dc.contributor.author Sakelliou, L en
dc.date.accessioned 2014-03-01T01:18:38Z
dc.date.available 2014-03-01T01:18:38Z
dc.date.issued 2003 en
dc.identifier.issn 0031-9155 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15117
dc.subject Treatment Planning en
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Radiology, Nuclear Medicine & Medical Imaging en
dc.subject.other Attenuation en
dc.subject.other Mathematical models en
dc.subject.other Monte Carlo methods en
dc.subject.other Photons en
dc.subject.other Water en
dc.subject.other Dose rate en
dc.subject.other Dosimetry en
dc.subject.other alloy en
dc.subject.other iridium 192 en
dc.subject.other tungsten en
dc.subject.other accuracy en
dc.subject.other analytic method en
dc.subject.other article en
dc.subject.other brachytherapy en
dc.subject.other calculation en
dc.subject.other density en
dc.subject.other dosimetry en
dc.subject.other energy absorption en
dc.subject.other evaluation en
dc.subject.other geometry en
dc.subject.other light scattering en
dc.subject.other model en
dc.subject.other Monte Carlo method en
dc.subject.other phantom en
dc.subject.other photon en
dc.subject.other prediction en
dc.subject.other priority journal en
dc.subject.other radiation dose en
dc.subject.other treatment planning en
dc.subject.other Algorithms en
dc.subject.other Anisotropy en
dc.subject.other Brachytherapy en
dc.subject.other Humans en
dc.subject.other Iridium Radioisotopes en
dc.subject.other Linear Energy Transfer en
dc.subject.other Models, Biological en
dc.subject.other Radiometry en
dc.subject.other Radiopharmaceuticals en
dc.subject.other Radiotherapy Dosage en
dc.subject.other Radiotherapy Planning, Computer-Assisted en
dc.subject.other Reproducibility of Results en
dc.subject.other Scattering, Radiation en
dc.subject.other Sensitivity and Specificity en
dc.title An analytical dosimetry model as a step towards accounting for inhomogeneities and bounded geometries in 192Ir brachytherapy treatment planning en
heal.type journalArticle en
heal.identifier.primary 10.1088/0031-9155/48/11/310 en
heal.identifier.secondary http://dx.doi.org/10.1088/0031-9155/48/11/310 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract A simple analytical dose rate calculation model based on primary and scatter separation that treats 192 IF as a monoenergetic source by use of appropriate attenuation and mass energy absorption coefficients is documented for accurate dosimetry in water. This model is then generalized and tested for use in any homogeneous tissue material of radiobiological interest using scatter to primary ratios calculated in water with a material density scaling to account for the difference in the scattering properties of these materials and water. The potential of the analytical model for predicting the effect of the interference of an inhomogeneity is then evaluated by comparison with corresponding Monte Carlo calculations. It is found that regardless of the inhomogeneity dimensions and position relative to the source, the model is capable of increased accuracy (better than 2%) in calculating the primary dose rate at any point not only for low-Z tissue materials but also for high-Z shielding materials where a severe hardening of the primary photons occurs. Overall, for low-Z tissue inhomogeneities the proposed model succeeds in correcting dosimetry results towards the right direction compared to commercial treatment planning systems that currently ignore the effect of phantom dimensions and inhomogeneity interference. Regarding high-Z shielding materials the proposed model accurately predicts the dose reduction just beyond the inhomogeneity (for example it predicts a dose reduction of 47% just behind a tungsten alloy cylinder of 1 cm diameter and 2 mm thickness placed at 1.4 cm away from an Ir-192 source, in agreement with corresponding results in the literature) but does not account for the increasing contribution of the laterally scattered photons with increasing distance from the bounded inhomogeneity. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Physics in Medicine and Biology en
dc.identifier.doi 10.1088/0031-9155/48/11/310 en
dc.identifier.isi ISI:000183562000010 en
dc.identifier.volume 48 en
dc.identifier.issue 11 en
dc.identifier.spage 1625 en
dc.identifier.epage 1647 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής