dc.contributor.author |
Anagnostopoulos, G |
en |
dc.contributor.author |
Baltas, D |
en |
dc.contributor.author |
Karaiskos, P |
en |
dc.contributor.author |
Pantelis, E |
en |
dc.contributor.author |
Papagiannis, P |
en |
dc.contributor.author |
Sakelliou, L |
en |
dc.date.accessioned |
2014-03-01T01:18:38Z |
|
dc.date.available |
2014-03-01T01:18:38Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0031-9155 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15117 |
|
dc.subject |
Treatment Planning |
en |
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Radiology, Nuclear Medicine & Medical Imaging |
en |
dc.subject.other |
Attenuation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Photons |
en |
dc.subject.other |
Water |
en |
dc.subject.other |
Dose rate |
en |
dc.subject.other |
Dosimetry |
en |
dc.subject.other |
alloy |
en |
dc.subject.other |
iridium 192 |
en |
dc.subject.other |
tungsten |
en |
dc.subject.other |
accuracy |
en |
dc.subject.other |
analytic method |
en |
dc.subject.other |
article |
en |
dc.subject.other |
brachytherapy |
en |
dc.subject.other |
calculation |
en |
dc.subject.other |
density |
en |
dc.subject.other |
dosimetry |
en |
dc.subject.other |
energy absorption |
en |
dc.subject.other |
evaluation |
en |
dc.subject.other |
geometry |
en |
dc.subject.other |
light scattering |
en |
dc.subject.other |
model |
en |
dc.subject.other |
Monte Carlo method |
en |
dc.subject.other |
phantom |
en |
dc.subject.other |
photon |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
radiation dose |
en |
dc.subject.other |
treatment planning |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Brachytherapy |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Iridium Radioisotopes |
en |
dc.subject.other |
Linear Energy Transfer |
en |
dc.subject.other |
Models, Biological |
en |
dc.subject.other |
Radiometry |
en |
dc.subject.other |
Radiopharmaceuticals |
en |
dc.subject.other |
Radiotherapy Dosage |
en |
dc.subject.other |
Radiotherapy Planning, Computer-Assisted |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.subject.other |
Scattering, Radiation |
en |
dc.subject.other |
Sensitivity and Specificity |
en |
dc.title |
An analytical dosimetry model as a step towards accounting for inhomogeneities and bounded geometries in 192Ir brachytherapy treatment planning |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0031-9155/48/11/310 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0031-9155/48/11/310 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
A simple analytical dose rate calculation model based on primary and scatter separation that treats 192 IF as a monoenergetic source by use of appropriate attenuation and mass energy absorption coefficients is documented for accurate dosimetry in water. This model is then generalized and tested for use in any homogeneous tissue material of radiobiological interest using scatter to primary ratios calculated in water with a material density scaling to account for the difference in the scattering properties of these materials and water. The potential of the analytical model for predicting the effect of the interference of an inhomogeneity is then evaluated by comparison with corresponding Monte Carlo calculations. It is found that regardless of the inhomogeneity dimensions and position relative to the source, the model is capable of increased accuracy (better than 2%) in calculating the primary dose rate at any point not only for low-Z tissue materials but also for high-Z shielding materials where a severe hardening of the primary photons occurs. Overall, for low-Z tissue inhomogeneities the proposed model succeeds in correcting dosimetry results towards the right direction compared to commercial treatment planning systems that currently ignore the effect of phantom dimensions and inhomogeneity interference. Regarding high-Z shielding materials the proposed model accurately predicts the dose reduction just beyond the inhomogeneity (for example it predicts a dose reduction of 47% just behind a tungsten alloy cylinder of 1 cm diameter and 2 mm thickness placed at 1.4 cm away from an Ir-192 source, in agreement with corresponding results in the literature) but does not account for the increasing contribution of the laterally scattered photons with increasing distance from the bounded inhomogeneity. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Physics in Medicine and Biology |
en |
dc.identifier.doi |
10.1088/0031-9155/48/11/310 |
en |
dc.identifier.isi |
ISI:000183562000010 |
en |
dc.identifier.volume |
48 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1625 |
en |
dc.identifier.epage |
1647 |
en |