dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Manoussakis, A |
en |
dc.date.accessioned |
2014-03-01T01:18:39Z |
|
dc.date.available |
2014-03-01T01:18:39Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0039-3223 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15129 |
|
dc.subject |
Indecomposable Banach space |
en |
dc.subject |
Reflexive Banach space |
en |
dc.subject |
Unconditionally saturated |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
An indecomposable and unconditionally saturated Banach space |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.4064/sm159-1-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.4064/sm159-1-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
We construct an indecomposable reflexive Banach space X-ius such that every infinite-dimensional closed subspace contains an unconditional basic sequence. We also show that every operator T is an element of B (X-ius) is of the form lambdaI+S with S 6 strictly singular operator. |
en |
heal.publisher |
POLISH ACAD SCIENCES INST MATHEMATICS |
en |
heal.journalName |
Studia Mathematica |
en |
dc.identifier.doi |
10.4064/sm159-1-1 |
en |
dc.identifier.isi |
ISI:000220077400002 |
en |
dc.identifier.volume |
159 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
32 |
en |