HEAL DSpace

Application of bicomplex (quaternion) algebra to fundamental electromagnetics: A lower order alternative to the Helmholtz equation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Anastassiu, HT en
dc.contributor.author Atlamazoglou, PE en
dc.contributor.author Kaklamani, DI en
dc.date.accessioned 2014-03-01T01:18:40Z
dc.date.available 2014-03-01T01:18:40Z
dc.date.issued 2003 en
dc.identifier.issn 0018-926X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15147
dc.subject Analytic solutions en
dc.subject Bicomplex algebra en
dc.subject Helmholtz equation en
dc.subject Inhomogeneous media en
dc.subject Quaternions en
dc.subject Transverse electric magnetic (TEM) waves en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Telecommunications en
dc.subject.other Algebra en
dc.subject.other Electromagnetic wave propagation en
dc.subject.other Electromagnetism en
dc.subject.other Magnetic field effects en
dc.subject.other Vectors en
dc.subject.other Transverse electric magnetic (TEM) waves en
dc.subject.other Electromagnetic waves en
dc.title Application of bicomplex (quaternion) algebra to fundamental electromagnetics: A lower order alternative to the Helmholtz equation en
heal.type journalArticle en
heal.identifier.primary 10.1109/TAP.2003.810231 en
heal.identifier.secondary http://dx.doi.org/10.1109/TAP.2003.810231 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract The mathematical concept of bicomplex numbers (quaternions) is introduced in electromagnetics, and is directly applied to the derivation of analytical solutions of Maxwell's equations. It is demonstrated that, with the assistance of a bicomplex vector field, a novel entity combining both the electric and the magnetic fields, the number of unknown quantities is practically reduced by half, whereas the Helmholtz equation is no longer necessary in the development of the final solution. The most important advantage of the technique is revealed in the analysis of electromagnetic propagation through inhomogeneous media, where the coefficients of the (second order) Helmholtz equation are variable, causing severe complications to the solution procedure. Unlike conventional methods, bicomplex algebra invokes merely first order differential equations, solvable even when their coefficients vary, and hence enables the extraction of several closed form solutions, not easily derivable via standard analytical techniques. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Antennas and Propagation en
dc.identifier.doi 10.1109/TAP.2003.810231 en
dc.identifier.isi ISI:000184769400050 en
dc.identifier.volume 51 en
dc.identifier.issue 8 en
dc.identifier.spage 2130 en
dc.identifier.epage 2136 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής