HEAL DSpace

Approximation methods for nonconvex parabolic optimal control problems using relaxed controls

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.date.accessioned 2014-03-01T01:18:41Z
dc.date.available 2014-03-01T01:18:41Z
dc.date.issued 2003 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15152
dc.subject Approximation Method en
dc.subject Distributed Control en
dc.subject Finite Element Method en
dc.subject Optimal Control Problem en
dc.subject Parabolic Partial Differential Equation en
dc.subject Penalty Method en
dc.subject State Constraints en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other DISCRETE APPROXIMATION en
dc.subject.other DESCENT en
dc.title Approximation methods for nonconvex parabolic optimal control problems using relaxed controls en
heal.type journalArticle en
heal.identifier.primary 10.1007/978-3-540-24588-9_23 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-24588-9_23 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract We consider an optimal distributed control problem involving semilinear parabolic partial differential equations, with control and state constraints. Since no convexity assumptions are made, the problem is reformulated in relaxed form. The state equation is discretized using a finite element method in space and a theta-scheme in time, while the controls are approximated by blockwise constant relaxed controls. The first result is that, under appropriate assumptions, the properties of optimality, and of extremality and admissibility, carry over in the limit to the corresponding properties for the relaxed continuous problem. We also propose progressively refining discrete conditional gradient and gradient-penalty methods, which generate relaxed controls, for solving the continuous relaxed problem, thus reducing computations and memory. Numerical examples are given. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName LARGE-SCALE SCIENTIFIC COMPUTING en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/978-3-540-24588-9_23 en
dc.identifier.isi ISI:000189446500023 en
dc.identifier.volume 2907 en
dc.identifier.spage 214 en
dc.identifier.epage 221 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής