HEAL DSpace

Bagley correction: The effect of contraction angle and its prediction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.contributor.author Hatzikiriakos, SG en
dc.date.accessioned 2014-03-01T01:18:44Z
dc.date.available 2014-03-01T01:18:44Z
dc.date.issued 2003 en
dc.identifier.issn 0035-4511 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15164
dc.subject Bagley correction en
dc.subject Contraction angle en
dc.subject End effects en
dc.subject K-BKZ and Cross constitutive models en
dc.subject.classification Mechanics en
dc.subject.other capillary flow en
dc.subject.other contraction en
dc.subject.other mathematical modeling en
dc.subject.other polymer melt en
dc.subject.other viscoelasticity en
dc.subject.other viscosity en
dc.title Bagley correction: The effect of contraction angle and its prediction en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00397-003-0294-y en
heal.identifier.secondary http://dx.doi.org/10.1007/s00397-003-0294-y en
heal.language English en
heal.publicationDate 2003 en
heal.abstract The excess pressure losses due to end effects (mainly entrance) in the capillary flow of a branched polypropylene melt were studied both experimentally and theoretically. These losses were first determined experimentally as a function of the contraction angle ranging from 10degrees to 150degrees. It was found that the excess pressure loss function decreases for the same apparent shear rate with increasing contraction angle from 10degrees to about 45degrees, and consequently slightly increases from 45degrees up to contraction angles of 150degrees. Numerical simulations using a multimode K-BKZ viscoelastic and a purely viscous (Cross) model were used to predict the end pressures. It was found that the numerical predictions do agree well with the experimental results for small contraction angles up to 30degrees. However, the numerical simulations under-predict the end pressure for larger contraction angles. The effects of viscoelasticity, shear, and elongation on the numerical predictions are also assessed in detail. Shear is the dominant factor controlling the overall pressure drop in flows through small contraction angles. Elongation becomes important at higher contraction angles (greater than 45degrees). It is demonstrated in abrupt contractions (angle of 180degrees) that both the entrance pressure loss and the vortex size are strongly dependent on the extensional viscosity for this branched polymer. It is suggested that such an experiment (visualisation of entrance flow) can be useful in evaluating the validity of constitutive equations and it can also be used to fitting parameters of rheological models that control the elongational viscosity. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Rheologica Acta en
dc.identifier.doi 10.1007/s00397-003-0294-y en
dc.identifier.isi ISI:000184017800003 en
dc.identifier.volume 42 en
dc.identifier.issue 4 en
dc.identifier.spage 309 en
dc.identifier.epage 320 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής