HEAL DSpace

Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chaloulakou, A en
dc.contributor.author Saisana, M en
dc.contributor.author Spyrellis, N en
dc.date.accessioned 2014-03-01T01:18:46Z
dc.date.available 2014-03-01T01:18:46Z
dc.date.issued 2003 en
dc.identifier.issn 0048-9697 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15187
dc.subject Air quality forecasting en
dc.subject Model performance indices en
dc.subject Neural networks en
dc.subject Ozone en
dc.subject.classification Environmental Sciences en
dc.subject.other Estimation en
dc.subject.other Forecasting en
dc.subject.other Linear equations en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Regression analysis en
dc.subject.other Ozone concentration en
dc.subject.other Ozone en
dc.subject.other ozone en
dc.subject.other artificial neural network en
dc.subject.other atmospheric pollution en
dc.subject.other modeling en
dc.subject.other ozone en
dc.subject.other summer en
dc.subject.other air pollution en
dc.subject.other air quality en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other comparative study en
dc.subject.other experimental model en
dc.subject.other forecasting en
dc.subject.other Greece en
dc.subject.other linear regression analysis en
dc.subject.other prediction en
dc.subject.other priority journal en
dc.subject.other summer en
dc.subject.other Greece en
dc.title Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0048-9697(03)00335-8 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0048-9697(03)00335-8 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract A comparison study has been performed with neural networks (NNs) and multiple linear regression models to forecast the next day's maximum hourly ozone concentration in the Athens basin at four representative monitoring stations that show very different behavior. All models use 11 predictors (eight meteorological and three persistence variables) and are developed and validated between April and October from 1992 to 1999. Performance results based on a wide set of forecast quality measures indicate that the NNs provide better estimates of ozone concentrations at the monitoring sites, whilst the more often used linear models are less efficient at accurately forecasting high ozone concentrations. The violation of the European information threshold of 180 mug/m(3) is successfully predicted by the NN in 72% of the cases on average. Results at all stations are consistent with similar ozone forecast studies using NNs in other European cities. (C) 2003 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Science of the Total Environment en
dc.identifier.doi 10.1016/S0048-9697(03)00335-8 en
dc.identifier.isi ISI:000184929200001 en
dc.identifier.volume 313 en
dc.identifier.issue 1-3 en
dc.identifier.spage 1 en
dc.identifier.epage 13 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής