HEAL DSpace

Coupled seismic response analysis of rubble-mound breakwaters

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Memos, CD en
dc.contributor.author Kiara, A en
dc.contributor.author Pavlidis, E en
dc.date.accessioned 2014-03-01T01:18:48Z
dc.date.available 2014-03-01T01:18:48Z
dc.date.issued 2003 en
dc.identifier.issn 1472-4561 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15204
dc.subject Docks and harbours en
dc.subject Maritime engineering en
dc.subject Seismic engineering en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Civil en
dc.subject.classification Engineering, Ocean en
dc.subject.classification Water Resources en
dc.subject.other Deformation en
dc.subject.other Geotechnical engineering en
dc.subject.other Hydrodynamics en
dc.subject.other Seismology en
dc.subject.other Rubble-mound breakwaters en
dc.subject.other Breakwaters en
dc.subject.other breakwater en
dc.subject.other hydrodynamic force en
dc.subject.other seismic response en
dc.subject.other boundary element method en
dc.subject.other breakwater en
dc.subject.other hydrodynamic force en
dc.subject.other seismic response en
dc.subject.other shaking table test en
dc.title Coupled seismic response analysis of rubble-mound breakwaters en
heal.type journalArticle en
heal.identifier.primary 10.1680/wama.156.1.23.37996 en
heal.identifier.secondary http://dx.doi.org/10.1680/wama.156.1.23.37996 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract The present investigation considers the seismic behaviour of rubble-mound breakwaters by taking into account the coupling between the hydrodynamic loading and the shaking of the mound. To this end a boundary element code was developed that predicts the hydrodynamic pressures on the faces of the breakwater. This was coupled with a geotechnical code providing the accelerations along the height of the structure. Shaking-table experiments were carried out to verify the model. The methodology was then applied to real-life structures. It is found that the quality of the foundation soil directly and decisively affects the pressures and induced accelerations. Weak foundations can trigger large structure deformations. In tall structures the pressures and accelerations of the mound increase with frequency. Far from resonance, the maximum pressures on the slopes occur at 40% of the water depth from the bed. The total hydrodynamic force can be high under resonance conditions. It is also found that Westergaard's expression overestimates pressures, except in cases of rigid base and shakings of small acceleration and high frequency. The coupling of the hydrodynamic loading and the shaking of the mound, as well as the frequency dependence of the model, represent advances over the conventional Westergaard's relation. en
heal.publisher THOMAS TELFORD SERVICES LTD en
heal.journalName Proceedings of the Institution of Civil Engineers: Water and Maritime Engineering en
dc.identifier.doi 10.1680/wama.156.1.23.37996 en
dc.identifier.isi ISI:000182083600003 en
dc.identifier.volume 156 en
dc.identifier.issue 1 en
dc.identifier.spage 23 en
dc.identifier.epage 31 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής