dc.contributor.author |
Afrati, F |
en |
dc.contributor.author |
Leiss, H |
en |
dc.contributor.author |
De Rougemont, M |
en |
dc.date.accessioned |
2014-03-01T01:18:48Z |
|
dc.date.available |
2014-03-01T01:18:48Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0169-2968 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15213 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0141830866&partnerID=40&md5=5dcb0e758b2afbaf848fa1c14968f986 |
en |
dc.relation.uri |
http://iospress.metapress.com/openurl.asp?genre=article&issn=0169-2968&volume=56&issue=1&spage=155 |
en |
dc.relation.uri |
http://www.informatik.uni-trier.de/~ley/db/journals/fuin/fuin56.html#AfratiLR03 |
en |
dc.subject |
Definability |
en |
dc.subject |
Lempel-Ziv-78 |
en |
dc.subject |
Logic |
en |
dc.subject |
String compression |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Formal logic |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
String compression |
en |
dc.subject.other |
Data compression |
en |
dc.title |
Definability and Compression |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
A compression algorithm takes a finite structure of a class K as input and produces a finite structure of a different class K' as output. Given a property P on the class K defined in a logic ℒ, we study the definability of property P on the class K'. We consider two compression schemes on unary ordered structures (strings), compression by run-length encoding and the classical Lempel-Ziv-78 scheme. First-order properties of strings are first-order on run-length compressed strings, but this fails for images, i.e. 2-dimensional strings. We present simple first-order properties of strings which are not first-order definable on strings compressed with the Lempel-Ziv-78 compression scheme. We show that all properties of strings that are first-order definable on strings are definable on Lempel-Ziv compressed strings in FO(TC), the extension of first-order logic with the transitive closure operator. We define a subclass ℱ of the first-order properties of strings such that if P is a property in ℱ, it is also first-order definable on the Lempel-Ziv compressed strings. Monadic second-order properties of strings, i.e. regular languages, are dyadic second-order definable on Lempel-Ziv compressed strings. |
en |
heal.publisher |
IOS PRESS |
en |
heal.journalName |
Fundamenta Informaticae |
en |
dc.identifier.isi |
ISI:000186087600010 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
155 |
en |
dc.identifier.epage |
180 |
en |