dc.contributor.author |
Arapoglou, D |
en |
dc.contributor.author |
Vlyssides, A |
en |
dc.contributor.author |
Israilides, C |
en |
dc.contributor.author |
Zorpas, A |
en |
dc.contributor.author |
Karlis, P |
en |
dc.date.accessioned |
2014-03-01T01:18:52Z |
|
dc.date.available |
2014-03-01T01:18:52Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0304-3894 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15232 |
|
dc.subject |
Electrolysis |
en |
dc.subject |
Methyl-parathion |
en |
dc.subject |
Pesticide detoxification |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Cathodes |
en |
dc.subject.other |
Detoxification |
en |
dc.subject.other |
Electrochemistry |
en |
dc.subject.other |
Electrolytes |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
pH effects |
en |
dc.subject.other |
Electrochemical oxidation |
en |
dc.subject.other |
Hazardous materials |
en |
dc.subject.other |
carbon dioxide |
en |
dc.subject.other |
electrolyte |
en |
dc.subject.other |
methyl group |
en |
dc.subject.other |
parathion |
en |
dc.subject.other |
pesticide |
en |
dc.subject.other |
platinum |
en |
dc.subject.other |
sodium chloride |
en |
dc.subject.other |
stainless steel |
en |
dc.subject.other |
titanium derivative |
en |
dc.subject.other |
water |
en |
dc.subject.other |
aqueous solution |
en |
dc.subject.other |
electrochemical process |
en |
dc.subject.other |
pesticide |
en |
dc.subject.other |
pollutant removal |
en |
dc.subject.other |
separation characteristics |
en |
dc.subject.other |
aqueous solution |
en |
dc.subject.other |
article |
en |
dc.subject.other |
degradation |
en |
dc.subject.other |
detoxification |
en |
dc.subject.other |
electrochemistry |
en |
dc.subject.other |
electrode |
en |
dc.subject.other |
electrolysis |
en |
dc.subject.other |
energy consumption |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
pH |
en |
dc.subject.other |
pollutant |
en |
dc.subject.other |
reduction |
en |
dc.subject.other |
scale up |
en |
dc.subject.other |
toxic waste |
en |
dc.subject.other |
Electrolysis |
en |
dc.subject.other |
Industrial Waste |
en |
dc.subject.other |
Insecticides |
en |
dc.subject.other |
Methyl Parathion |
en |
dc.subject.other |
Solutions |
en |
dc.subject.other |
Waste Management |
en |
dc.title |
Detoxification of methyl-parathion pesticide in aqueous solutions by electrochemical oxidation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0304-3894(02)00318-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0304-3894(02)00318-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Commercial methyl-parathion (MeP) was detoxified using an electrochemical method that employed a Ti/Pt anode and stainless steel 304 as cathode. Sodium chloride was added as electrolyte and the mixture was passed through an electrolytic cell for 2 h. Due to the strong oxidizing potential of the produced chemicals, the organic pollutants were wet oxidized to carbon dioxide and water. A number of experiments were run at laboratory scale. Reductions of COD and BOD5 were both over 80% and the mean energy consumption was 18-8 kWh per kg(-1) COD reduced (CODr) The degradation of MeP was more effective when the pH of the brine solution was in the acid range than when it was in the alkaline range. From the results it can be concluded that electrolysis could be used as an oxidation pre-treatment stage for detoxification of toxic wastes with MeP. (C) 2003 Elsevier Science B.V All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Hazardous Materials |
en |
dc.identifier.doi |
10.1016/S0304-3894(02)00318-7 |
en |
dc.identifier.isi |
ISI:000181804600014 |
en |
dc.identifier.volume |
98 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
191 |
en |
dc.identifier.epage |
199 |
en |