dc.contributor.author |
Mitsoulis, E |
en |
dc.contributor.author |
Schwetz, M |
en |
dc.contributor.author |
Munstedt, H |
en |
dc.date.accessioned |
2014-03-01T01:18:57Z |
|
dc.date.available |
2014-03-01T01:18:57Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0377-0257 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15275 |
|
dc.subject |
Extensional viscosity |
en |
dc.subject |
Integral constitutive equations |
en |
dc.subject |
Planar entry flow |
en |
dc.subject |
Polymer melts |
en |
dc.subject |
Viscoelasticity |
en |
dc.subject |
Vortex growth |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Laser Doppler velocimeters |
en |
dc.subject.other |
Rheology |
en |
dc.subject.other |
Shrinkage |
en |
dc.subject.other |
Strain hardening |
en |
dc.subject.other |
Vortex flow |
en |
dc.subject.other |
Creeping entry flow |
en |
dc.subject.other |
Low density polyethylenes |
en |
dc.subject.other |
non-linear motion |
en |
dc.subject.other |
polymer melt |
en |
dc.subject.other |
rheology |
en |
dc.subject.other |
shear flow |
en |
dc.subject.other |
viscosity |
en |
dc.title |
Entry flow of LDPE melts in a planar contraction |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0377-0257(03)00012-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0377-0257(03)00012-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Experiments using laser-Doppler velocimetry (LDV) and numerical simulations have been undertaken for the creeping entry flow of two rheologically well-characterised low-density polyethylene (LDPE) melts in a 14:1 planar contraction. LDV measurements of the flow reveal a distinct behaviour between the two melts regarding vortex formation. The flow of the melts has been modelled using an integral constitutive equation of the K-BKZ type with a spectrum of relaxation times, modified to properly account for strain hardening in the planar extensional flow relevant for the geometry used. Numerical values for the constants appearing in the equation have been obtained from fitting dynamic data (G' and G") as well as data for the viscosities and normal stresses as measured in shear. Elongational data were derived from transient and steady uniaxial elongation experiments. The experiments show that for one LDPE melt the vortex keeps small with increasing flow rate, while for the other there is a vortex growth in the same range of flow rates. The numerical simulations also predict the same trend in agreement with the experiments. The differences in flow behaviour of the two branched melts are found to be attributed to big differences in the average relaxation times, giving rise to different De numbers or dimensionless stress ratios S-R, for the same range of flow rates. Equally important is the more pronounced extensional strain-hardening behaviour of the vortex-producing polymer, giving rise to high Trouton ratios T-R. (C) 2003 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Non-Newtonian Fluid Mechanics |
en |
dc.identifier.doi |
10.1016/S0377-0257(03)00012-0 |
en |
dc.identifier.isi |
ISI:000181952200003 |
en |
dc.identifier.volume |
111 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
41 |
en |
dc.identifier.epage |
61 |
en |