HEAL DSpace

Estimation of heterogeneous aquifer parameters from piezometric data using ridge functions and neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mantoglou, A en
dc.date.accessioned 2014-03-01T01:18:57Z
dc.date.available 2014-03-01T01:18:57Z
dc.date.issued 2003 en
dc.identifier.issn 1436-3240 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15280
dc.subject Aquifer modelling en
dc.subject Inverse modelling en
dc.subject Model calibration en
dc.subject Neural networks en
dc.subject.classification Engineering, Environmental en
dc.subject.classification Engineering, Civil en
dc.subject.classification Environmental Sciences en
dc.subject.classification Statistics & Probability en
dc.subject.classification Water Resources en
dc.subject.other aquifer characterization en
dc.subject.other artificial neural network en
dc.subject.other calibration en
dc.subject.other heterogeneity en
dc.subject.other hydrological modeling en
dc.subject.other piezometer en
dc.title Estimation of heterogeneous aquifer parameters from piezometric data using ridge functions and neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00477-003-0155-3 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00477-003-0155-3 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Inverse modeling aims to estimate transmissivity and other parameters needed by distributed aquifer models, using piezometric measurements. While these parameters are highly variable in space, the two-dimensional aquifer area is essentially empty of measurements (""curse of dimensionality""). To address this problem, a representation of the two-dimensional transmissivity map based on ridge functions and neural networks is introduced and applied to inverse aquifer modeling. The proposed representation has good expressive power, i.e. it is concise and convergences quickly as the number of parameters are increased, and it is expected to express complex transmissivity variations with relatively few parameters which can be estimated from the piezometric measurements. A simple regularization that can dampen erratic high frequency terms in the estimated parameters is suggested. Several examples indicate that the proposed parameterization can handle diverse types of transmissivity variations while it is particulary suited when the true transmissivity map exhibits specific sorts of heterogeneity with large anisotropies or abrupt changes along lines. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Stochastic Environmental Research and Risk Assessment en
dc.identifier.doi 10.1007/s00477-003-0155-3 en
dc.identifier.isi ISI:000186542900007 en
dc.identifier.volume 17 en
dc.identifier.issue 5 en
dc.identifier.spage 339 en
dc.identifier.epage 352 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής