HEAL DSpace

Existence and Relaxation for Finite-Dimensional Optimal Control Problems Driven by Maximal Monotone Operators

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papageorgiou, NS en
dc.contributor.author Papalini, F en
dc.date.accessioned 2014-03-01T01:18:58Z
dc.date.available 2014-03-01T01:18:58Z
dc.date.issued 2003 en
dc.identifier.issn 0232-2064 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15294
dc.subject Γ-regularization en
dc.subject Admissible relaxation en
dc.subject Carathéodory's theorem en
dc.subject Maximal monotone operator en
dc.subject Multi-valued dynamics en
dc.subject Multiple Γ-limits en
dc.subject Reduction method en
dc.subject Relaxed problem en
dc.subject Variational inequalities en
dc.subject Young measure en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other UNILATERAL CONSTRAINTS en
dc.subject.other INTEGRAL FUNCTIONALS en
dc.subject.other LOWER SEMICONTINUITY en
dc.subject.other LAGRANGE PROBLEMS en
dc.subject.other THEOREMS en
dc.subject.other WEAK en
dc.title Existence and Relaxation for Finite-Dimensional Optimal Control Problems Driven by Maximal Monotone Operators en
heal.type journalArticle en
heal.identifier.primary 10.4171/ZAA/1177 en
heal.identifier.secondary http://dx.doi.org/10.4171/ZAA/1177 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In this paper we study the optimal control of a class of nonlinear finite-dimensional optimal control problems driven by a maximal monotone operator which is not necessarily everywhere defined. So our model problem incorporates systems monitored by variational inequalities. First we prove an existence theorem using the reduction method of Berkovitz and Cesari. This requires a convexity hypothesis. When this convexity condition is not satisfied, we have to pass to an augmented, convexified problem known as the "relaxed problem". We present four relaxation methods. The first uses Young measures, the second uses multi-valued dynamics, the third is based on Caratheodory's theorem for convex sets in R-N and the fourth uses lower semicontinuity arguments and Gamma-limits. We show that they are equivalent and admissible, which roughly speaking means that the corresponding relaxed problem is in a sense the "closure" of the original one. en
heal.publisher HELDERMANN VERLAG en
heal.journalName Zeitschrift fur Analysis und ihre Anwendung en
dc.identifier.doi 10.4171/ZAA/1177 en
dc.identifier.isi ISI:000220459900008 en
dc.identifier.volume 22 en
dc.identifier.issue 4 en
dc.identifier.spage 863 en
dc.identifier.epage 898 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής