HEAL DSpace

Fuzzy model predictive control of non-linear processes using genetic algorithms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sarimveis, H en
dc.contributor.author Bafas, G en
dc.date.accessioned 2014-03-01T01:19:00Z
dc.date.available 2014-03-01T01:19:00Z
dc.date.issued 2003 en
dc.identifier.issn 0165-0114 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15317
dc.subject Fuzzy control en
dc.subject Fuzzy models en
dc.subject Genetic algorithms en
dc.subject Model predictive control en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Statistics & Probability en
dc.subject.other Dynamic programming en
dc.subject.other Fuzzy sets en
dc.subject.other Genetic algorithms en
dc.subject.other Nonlinear systems en
dc.subject.other Model predictive control en
dc.subject.other Fuzzy control en
dc.title Fuzzy model predictive control of non-linear processes using genetic algorithms en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0165-0114(02)00506-7 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0165-0114(02)00506-7 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract This paper introduces a new fuzzy control technique, which belongs to the popular family of control algorithms, called Model Predictive Controllers. The method is based on a dynamic fuzzy model of the process to be controlled, which is used for predicting the future behavior of the output variables. A non-linear optimization problem is then formulated, which minimizes the difference between the model predictions and the desired trajectory over the prediction horizon and the control energy over a shorter control horizon. The problem is solved on line using a specially designed genetic algorithm, which has a number of advantages over conventional non-linear optimization techniques. The method can be used with any type of fuzzy model and is particularly useful when a direct fuzzy controller cannot be designed due to the complexity of the process and the difficulty in developing fuzzy control rules. The method is illustrated via the application to a non-linear single-input single-output reactor, where a Takagi-Sugeno model serves as a predictor of the process future behavior. (C) 2002 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Fuzzy Sets and Systems en
dc.identifier.doi 10.1016/S0165-0114(02)00506-7 en
dc.identifier.isi ISI:000185307400003 en
dc.identifier.volume 139 en
dc.identifier.issue 1 en
dc.identifier.spage 59 en
dc.identifier.epage 80 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής