dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Bafas, G |
en |
dc.date.accessioned |
2014-03-01T01:19:00Z |
|
dc.date.available |
2014-03-01T01:19:00Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0165-0114 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15317 |
|
dc.subject |
Fuzzy control |
en |
dc.subject |
Fuzzy models |
en |
dc.subject |
Genetic algorithms |
en |
dc.subject |
Model predictive control |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Dynamic programming |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Model predictive control |
en |
dc.subject.other |
Fuzzy control |
en |
dc.title |
Fuzzy model predictive control of non-linear processes using genetic algorithms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0165-0114(02)00506-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0165-0114(02)00506-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
This paper introduces a new fuzzy control technique, which belongs to the popular family of control algorithms, called Model Predictive Controllers. The method is based on a dynamic fuzzy model of the process to be controlled, which is used for predicting the future behavior of the output variables. A non-linear optimization problem is then formulated, which minimizes the difference between the model predictions and the desired trajectory over the prediction horizon and the control energy over a shorter control horizon. The problem is solved on line using a specially designed genetic algorithm, which has a number of advantages over conventional non-linear optimization techniques. The method can be used with any type of fuzzy model and is particularly useful when a direct fuzzy controller cannot be designed due to the complexity of the process and the difficulty in developing fuzzy control rules. The method is illustrated via the application to a non-linear single-input single-output reactor, where a Takagi-Sugeno model serves as a predictor of the process future behavior. (C) 2002 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Fuzzy Sets and Systems |
en |
dc.identifier.doi |
10.1016/S0165-0114(02)00506-7 |
en |
dc.identifier.isi |
ISI:000185307400003 |
en |
dc.identifier.volume |
139 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
59 |
en |
dc.identifier.epage |
80 |
en |