HEAL DSpace

Genetic algorithms in competitive environments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimou, CK en
dc.contributor.author Koumousis, VK en
dc.date.accessioned 2014-03-01T01:19:01Z
dc.date.available 2014-03-01T01:19:01Z
dc.date.issued 2003 en
dc.identifier.issn 0887-3801 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15322
dc.subject Algorithms en
dc.subject Optimization en
dc.subject Reliability analysis en
dc.subject Structural analysis en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Civil en
dc.subject.other Competition en
dc.subject.other Computational methods en
dc.subject.other Fuzzy control en
dc.subject.other Optimal control systems en
dc.subject.other Optimization en
dc.subject.other Parameter estimation en
dc.subject.other Population statistics en
dc.subject.other Probability en
dc.subject.other Problem solving en
dc.subject.other Statistical methods en
dc.subject.other Structural analysis en
dc.subject.other Computational efficiency en
dc.subject.other Optimal design en
dc.subject.other Parameter control en
dc.subject.other Reliability analysis en
dc.subject.other Genetic algorithms en
dc.title Genetic algorithms in competitive environments en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)0887-3801(2003)17:3(142) en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)0887-3801(2003)17:3(142) en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Competition is introduced among the populations of a number of genetic algorithms (GAs) in solving optimization problems. The aim is to adapt the parameters of the GAs, by altering the resources of the system, so as to achieve better solutions. The evolution of the different populations, having different sets of parameters, is controlled at the level of metapopulation, i.e., the union of populations, on the basis of statistics and trends of the evolution of every population. An overall fitness measure is introduced that incorporates a diversity measure and the required resources to rank the populations. The fuzzy outcome of the conflict among the populations guides the evolution of the different GAs toward better solutions in the statistical sense. The proposed scheme is applied to two different problems - a multimodal function with six global and several near-global optima, and a reliability based optimal design of a simple truss. Numerical results are presented, and the robustness and computational efficiency of the proposed scheme are discussed. © ASCE,. en
heal.publisher ASCE-AMER SOC CIVIL ENGINEERS en
heal.journalName Journal of Computing in Civil Engineering en
dc.identifier.doi 10.1061/(ASCE)0887-3801(2003)17:3(142) en
dc.identifier.isi ISI:000183651600003 en
dc.identifier.volume 17 en
dc.identifier.issue 3 en
dc.identifier.spage 142 en
dc.identifier.epage 149 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής