dc.contributor.author |
Lahanas, M |
en |
dc.contributor.author |
Baltas, D |
en |
dc.contributor.author |
Giannouli, S |
en |
dc.date.accessioned |
2014-03-01T01:19:01Z |
|
dc.date.available |
2014-03-01T01:19:01Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0031-9155 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15326 |
|
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Radiology, Nuclear Medicine & Medical Imaging |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Dosimetry |
en |
dc.subject.other |
Respiratory therapy |
en |
dc.subject.other |
Simulated annealing |
en |
dc.subject.other |
Brachytherapy |
en |
dc.subject.other |
Radiotherapy |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
brachytherapy |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
dosimetry |
en |
dc.subject.other |
implant |
en |
dc.subject.other |
intermethod comparison |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
process optimization |
en |
dc.subject.other |
prostate |
en |
dc.subject.other |
radiation dose |
en |
dc.subject.other |
simulation |
en |
dc.subject.other |
time |
en |
dc.subject.other |
treatment planning |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Brachytherapy |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Male |
en |
dc.subject.other |
Prostatic Neoplasms |
en |
dc.subject.other |
Quality Control |
en |
dc.subject.other |
Radiometry |
en |
dc.subject.other |
Radiotherapy Dosage |
en |
dc.subject.other |
Radiotherapy Planning, Computer-Assisted |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.subject.other |
Sensitivity and Specificity |
en |
dc.title |
Global convergence analysis of fast multiobjective gradient-based dose optimization algorithms for high-dose-rate brachytherapy |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0031-9155/48/5/304 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0031-9155/48/5/304 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
We consider the problem of the global convergence of gradient-based optimization algorithms for interstitial high-dose-rate (HDR) brachytherapy dose optimization using variance-based objectives. Possible local minima could lead to only sub-optimal solutions. We perform a configuration space analysis using a representative set of the entire non-dominated solution space. A set of three prostate implants is used in this study. We compare the results obtained by conjugate gradient algorithms, two variable metric algorithms and fast-simulated annealing. For the variable metric algorithm BFGS from numerical recipes, large fluctuations are observed. The limited memory L-BFGS algorithm and the conjugate gradient algorithm FRPR are globally convergent. Local minima or degenerate states are not observed. We study the possibility of obtaining a representative set of non-dominated solutions using optimal solution rearrangement and a warm start mechanism. For the surface and volume dose variance and their derivatives, a method is proposed which significantly reduces the number of required operations. The optimization time, ignoring a preprocessing step, is independent of the number of sampling points in the planning target volume. Multiobjective dose optimization in HDR brachytherapy using L-BFGS and a new modified computation method for the objectives and derivatives has been accelerated, depending on the number of sampling points, by a factor in the range 10-100. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Physics in Medicine and Biology |
en |
dc.identifier.doi |
10.1088/0031-9155/48/5/304 |
en |
dc.identifier.isi |
ISI:000181958500004 |
en |
dc.identifier.volume |
48 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
599 |
en |
dc.identifier.epage |
617 |
en |