HEAL DSpace

Improving the performance of resource allocation networks through hierarchical clustering of high-dimensional data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsapatsoulis, N en
dc.contributor.author Wallace, M en
dc.contributor.author Kasderidis, S en
dc.date.accessioned 2014-03-01T01:19:02Z
dc.date.available 2014-03-01T01:19:02Z
dc.date.issued 2003 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15338
dc.subject Ambient Intelligence en
dc.subject Hierarchical Clustering en
dc.subject High Dimensional Data en
dc.subject High Dimensionality en
dc.subject Intelligent System en
dc.subject Ionosphere en
dc.subject Knowledge Based System en
dc.subject Knowledge Modelling en
dc.subject Network Architecture en
dc.subject Resource Allocation en
dc.subject Unsupervised Clustering en
dc.subject Neural Network en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other NEURAL NETWORKS en
dc.subject.other SYSTEMS en
dc.title Improving the performance of resource allocation networks through hierarchical clustering of high-dimensional data en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-44989-2_103 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-44989-2_103 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Adaptivity to non-stationary contexts is a very important property for intelligent systems in general, as well as to a variety of applications of knowledge based systems in era of ""ambient intelligence"". In this paper we present a modified Resource Allocating Network architecture that allows for online adaptation and knowledge modelling through its adaptive structure. As in any neural network system proper parameter initialization reduces training time and effort. However, in RAN architectures, proper parameter initialization also leads to compact modelling (less hidden nodes) of the process under examination, and consequently to better generalization. In the cases of high-dimensional data parameter initialization is both difficult and time consuming. In the proposed scheme a high - dimensional, unsupervised clustering method is used to properly initialize the RAN architecture. Clusters correspond to the initial nodes of RAN, while output layer weights are also extracted from the clustering procedure. The efficiency of the proposed method has been tested on several classes of publicly available data (iris, ionosphere, etc.) © Springer-Verlag Berlin Heidelberg 2003. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/3-540-44989-2_103 en
dc.identifier.isi ISI:000185378100103 en
dc.identifier.volume 2714 en
dc.identifier.spage 867 en
dc.identifier.epage 874 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής