HEAL DSpace

Inexact information aided, low-cost, distributed genetic algorithms for aerodynamic shape optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karakasis, MK en
dc.contributor.author Giotis, AP en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:19:03Z
dc.date.available 2014-03-01T01:19:03Z
dc.date.issued 2003 en
dc.identifier.issn 0271-2091 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15345
dc.subject Distributed evolutionary methods en
dc.subject Genetic algorithms en
dc.subject Metamodels en
dc.subject Optimization en
dc.subject Parallelization en
dc.subject Radial basis function networks en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Computational fluid dynamics en
dc.subject.other Costs en
dc.subject.other Genetic algorithms en
dc.subject.other Optimization en
dc.subject.other Surrogate evaluation methods en
dc.subject.other Aerodynamics en
dc.subject.other aerodynamics en
dc.subject.other computational fluid dynamics en
dc.subject.other genetic algorithm en
dc.subject.other optimization en
dc.subject.other shape en
dc.subject.other turbomachinery en
dc.title Inexact information aided, low-cost, distributed genetic algorithms for aerodynamic shape optimization en
heal.type journalArticle en
heal.identifier.primary 10.1002/fld.575 en
heal.identifier.secondary http://dx.doi.org/10.1002/fld.575 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Despite its robustness, the design and optimization of aerodynamic shapes using genetic algorithms suffers from high computing cost requirements, due to excessive calls to Computational Fluid Dynamics tools for the evaluation of candidate solutions. To alleviate this problem, either the use of distributed genetic algorithms or the implementation of surrogate evaluation models have separately been proposed in the past. A distributed genetic algorithm relies on the handling of population subsets that evolve in a semi-isolated manner by regularly exchanging their best individuals. It is known that distributed schemes generally outperform single-population ones. On the other band, the implementation of less costly surrogate evaluation tools, such as the autocatalytic radial basis function networks developed by the authors for the purpose of getting rid of most of the 'useless' exact evaluations, reduces considerably the computational cost. The aim of the present paper is to employ a surrogate evaluation model in the context of a distributed genetic algorithm and to demonstrate that the combination of both results in maximum economy in CPU cost. In addition, whenever a multiprocessor system is available, the gain is much more pronounced, since the new optimization method maximizes parallel efficiency. The proposed method is used to solve inverse design and optimization problems in aeronautics and turbomachinery. Copyright (C) 2003 John Wiley Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal for Numerical Methods in Fluids en
dc.identifier.doi 10.1002/fld.575 en
dc.identifier.isi ISI:000186845000001 en
dc.identifier.volume 43 en
dc.identifier.issue 10-11 en
dc.identifier.spage 1149 en
dc.identifier.epage 1166 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής