HEAL DSpace

Large deflection analysis of beams with variable stiffness

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Tsiatas, GC en
dc.date.accessioned 2014-03-01T01:19:05Z
dc.date.available 2014-03-01T01:19:05Z
dc.date.issued 2003 en
dc.identifier.issn 0001-5970 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15377
dc.subject Boundary Condition en
dc.subject Cross Section en
dc.subject Differential Equation en
dc.subject Integral Representation en
dc.subject Load Distribution en
dc.subject Nonlinear Analysis en
dc.subject Nonlinear Differential Equation en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Boundary element method en
dc.subject.other Deflection (structures) en
dc.subject.other Differential equations en
dc.subject.other Finite element method en
dc.subject.other Nonlinear equations en
dc.subject.other Stiffness en
dc.subject.other Analog equation method en
dc.subject.other Axial deformation en
dc.subject.other Bending stiffness en
dc.subject.other Bernoulli-Euler beam en
dc.subject.other Transverse deformation en
dc.subject.other Beams and girders en
dc.title Large deflection analysis of beams with variable stiffness en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00707-003-0015-8 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00707-003-0015-8 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In this paper, the Analog Equation Method (AEM), a BEM-based method, is employed to the nonlinear analysis of a Bernoulli-Eider beam with variable stiffness undergoing large deflections, under general boundary conditions which maybe nonlinear. As the cross-sectional properties of the beam vary along its axis, the coefficients of the differential equations governing the equilibrium of the beam are variable. The formulation is in terms of the displacements. The governing equations are derived in both deformed and undeformed configuration and the deviations of the two approaches are studied. Using the concept of the analog equation, the two coupled nonlinear differential equations with variable coefficients are replaced by two uncoupled linear ones pertaining to the axial and transverse deformation of a substitute beam with unit axial and bending stiffness, respectively, under fictitious load distributions. Besides the effectiveness and accuracy of the developed method, a significant advantage is that the displacements as well as the stress resultants are computed at any cross-section of the beam using the respective integral representations as mathematical formulae. Several beams are analyzed under various boundary conditions and loadings to illustrate the merits of the method as well as its applicability, efficiency and accuracy. en
heal.publisher SPRINGER-VERLAG WIEN en
heal.journalName Acta Mechanica en
dc.identifier.doi 10.1007/s00707-003-0015-8 en
dc.identifier.isi ISI:000185355000001 en
dc.identifier.volume 164 en
dc.identifier.issue 1-2 en
dc.identifier.spage 1 en
dc.identifier.epage 13 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής