HEAL DSpace

Lattice-Subspaces and Positive Bases in Function Spaces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Polyrakis, IA en
dc.date.accessioned 2014-03-01T01:19:06Z
dc.date.available 2014-03-01T01:19:06Z
dc.date.issued 2003 en
dc.identifier.issn 1385-1292 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15379
dc.subject banach lattice en
dc.subject Convex Hull en
dc.subject Convex Set en
dc.subject Function Space en
dc.subject linear functionals en
dc.subject Value Function en
dc.subject.classification Mathematics en
dc.title Lattice-Subspaces and Positive Bases in Function Spaces en
heal.type journalArticle en
heal.identifier.primary 10.1023/A:1026274014666 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1026274014666 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Let x(1),..., x(n) be linearly independent, positive elements of the space R-Omega of the real valued functions defined on a set Omega and let X be the vector subspace of R-Omega generated by the functions xi. We study the problem: Does a finite-dimensional minimal lattice-subspace ( or equivalently a finite-dimensional minimal subspace with a positive basis) of R-Omega which contains X exist? To this end we define the function beta(t) = 1/z(t) (x(1)(t), x(2)( t),..., x(n)(t)), where z( t) = x(1)( t)+ x(2)(t)+...+ x(n)(t), which we call basic function and takes values in the simplex Delta(n) of R-+(n). We prove that the answer to the problem is positive if and only if the convex hull K of the closure of the range of beta is a polytope. Also we prove that X is a lattice-subspace (or equivalently X has positive basis) if and only if, K is an (n- 1)-simplex. In both cases, using the vertices of K, we determine a positive basis of the minimal lattice-subspace. In the sequel, we study the case where Omega is a convex set and x(1), x(2),..., x(n) are linear functions. This includes the case where x(i) are positive elements of a Banach lattice, or more general the case where x(i) are positive elements of an ordered space Y. Based on the linearity of the functions x(i) we prove some criteria by means of which we study if K is a polytope or not and also we determine the vertices of K. Finally note that finite dimensional lattice-subspaces and therefore also positive bases have applications in economics. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Positivity en
dc.identifier.doi 10.1023/A:1026274014666 en
dc.identifier.isi ISI:000186047300001 en
dc.identifier.volume 7 en
dc.identifier.issue 4 en
dc.identifier.spage 267 en
dc.identifier.epage 284 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής