dc.contributor.author |
Polyrakis, IA |
en |
dc.date.accessioned |
2014-03-01T01:19:10Z |
|
dc.date.available |
2014-03-01T01:19:10Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0233-1934 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15382 |
|
dc.subject |
Lattice subspace |
en |
dc.subject |
Linear optimization |
en |
dc.subject |
Portfolio insurance |
en |
dc.subject |
Projection basis |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.title |
Linear optimization in C(Ω) and portfolio insurance |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/0233193031000079829 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/0233193031000079829 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Suppose that X is a subspace of C(Omega) generated by n linearly independent positive elements of C(Omega). In this article we study the problem of minimization of a positive linear functional p of X in X, under a finite number of linear inequalities. This problem does not have always a solution and if a solution exists we cannot determine it. In this article we show that if X is contained in a finite dimensional minimal lattice-subspace Y of C(Omega) (or equivalently, if X is contained in a finite dimensional minimal subspace Y of C(Omega) with a positive basis) and m=dim Y, then the minimization problem has a solution and we determine the solutions by solving an equivalent linear programming problem in R-m. Finally note that this minimization problem has an important application in the portfolio insurance which was the motivation for the preparation of this article. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
Optimization |
en |
dc.identifier.doi |
10.1080/0233193031000079829 |
en |
dc.identifier.isi |
ISI:000182367400008 |
en |
dc.identifier.volume |
52 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
221 |
en |
dc.identifier.epage |
239 |
en |