dc.contributor.author |
Spyropoulos, CP |
en |
dc.contributor.author |
Sih, GC |
en |
dc.contributor.author |
Song, ZF |
en |
dc.date.accessioned |
2014-03-01T01:19:11Z |
|
dc.date.available |
2014-03-01T01:19:11Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0167-8442 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15386 |
|
dc.subject |
Energy density criterion |
en |
dc.subject |
Magnetoelectroelastic material |
en |
dc.subject |
Out-of-plane deformation |
en |
dc.subject |
Poling parallel to crack |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Cracks |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Inclusions |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Volume fraction |
en |
dc.subject.other |
Magnetoelectroelastic composites |
en |
dc.subject.other |
Composite materials |
en |
dc.subject.other |
composite |
en |
dc.subject.other |
crack |
en |
dc.subject.other |
fracture mechanics |
en |
dc.subject.other |
composite |
en |
dc.subject.other |
crack |
en |
dc.subject.other |
fracture mechanics |
en |
dc.title |
Magnetoelectroelastic composite with poling parallel to plane of line crack under out-of-plane deformation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-8442(03)00021-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-8442(03)00021-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The three-dimensional field equations can in general be regarded as the sum of in-plane and out-of-plane deformation. The method for the general solution is the same for both although the boundary conditions could make a difference. If a particular solution in exact form may be found for the out-of-plane case, the same may not hold for the in-plane case. Hence, there may be a good reason for discussing the out-of-plane crack problem in certain situations that should be emphasized. Otherwise, the reason may lie in the exploration of possible application to the in-plane problem, a direct solution of which would have required a considerable effort. The contribution of this work rests on the new findings for the case of poling parallel to the crack in a magnetoelectroelastic composite made of BaTiO3-CoFe2O4. The inclusions are BaTiO3 and the matrix is CoFe2O4. Several new features of the solution were not expected before hand. Unlike in-plane deformation with poling normal to the crack plane, maximum crack growth enhancement is found to occur in the BaTiO3-CoFe2O4 composite for a volume fraction of about 50%. Crack retardation increases as the volume fraction of the inclusions either increase or decrease. The occurrence of this same phenomenon in Mode I and II remain to be investigated. Poling direction of magnetic and electric field for line defects can have a significant effect on crack growth for magnetoelectroelastic materials. The foregoing conclusions are based on predictions made from the strain energy density criterion. (C) 2003 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Theoretical and Applied Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/S0167-8442(03)00021-1 |
en |
dc.identifier.isi |
ISI:000182987300007 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
281 |
en |
dc.identifier.epage |
289 |
en |