dc.contributor.author |
Chaloulakou, A |
en |
dc.contributor.author |
Grivas, G |
en |
dc.contributor.author |
Spyrellis, N |
en |
dc.date.accessioned |
2014-03-01T01:19:19Z |
|
dc.date.available |
2014-03-01T01:19:19Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
1047-3289 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15417 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0141483644&partnerID=40&md5=bac6182cd3c5da5146a134101e4923d4 |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Meteorology & Atmospheric Sciences |
en |
dc.subject.other |
Air quality |
en |
dc.subject.other |
Health |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Particles (particulate matter) |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Public awareness |
en |
dc.subject.other |
Air pollution control |
en |
dc.subject.other |
air pollution |
en |
dc.subject.other |
airborne particle |
en |
dc.subject.other |
analytical error |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
linear regression analysis |
en |
dc.subject.other |
multiple regression |
en |
dc.subject.other |
particulate matter |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
statistical model |
en |
dc.subject.other |
Air Pollutants |
en |
dc.subject.other |
Cities |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Particle Size |
en |
dc.subject.other |
Regression Analysis |
en |
dc.title |
Neural network and multiple regression models for PM10 prediction in Athens: A comparative assessment |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Particulate atmospheric pollution in urban areas is considered to have significant impact on human health. Therefore, the ability to make accurate predictions of particulate ambient concentrations is important to improve public awareness and air quality management. This study examines the possibility of using neural network methods as tools for daily average particulate matter with aerodynamic diameter <10 μm (PM10) concentration forecasting, providing an alternative to statistical models widely used up to this day. Based on a data inventory, in a fixed central site in Athens, Greece, ranging over a two-year period, and using mainly meteorological variables as inputs, neural network models and multiple linear regression models were developed and evaluated. Comparison statistics used indicate that the neural network approach has an edge over regression models, expressed both in terms of prediction error (root mean square error values lower by 8.2-9.4%) and of episodic prediction ability (false alarm rate values lower by 7-13%). The results demonstrate that artificial neural networks (ANNs), if properly trained and formed, can provide adequate solutions to particulate pollution prognostic demands. |
en |
heal.publisher |
AIR & WASTE MANAGEMENT ASSOC |
en |
heal.journalName |
Journal of the Air and Waste Management Association |
en |
dc.identifier.isi |
ISI:000185765500003 |
en |
dc.identifier.volume |
53 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
1183 |
en |
dc.identifier.epage |
1190 |
en |