HEAL DSpace

Nonlinear dynamic analysis of heterogeneous orthotropic membranes by the analog equation method

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Tsiatas, GC en
dc.date.accessioned 2014-03-01T01:19:19Z
dc.date.available 2014-03-01T01:19:19Z
dc.date.issued 2003 en
dc.identifier.issn 0955-7997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15424
dc.subject Heterogeneous en
dc.subject Membrane en
dc.subject Nonlinear dynamic en
dc.subject Orthotropic en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Dynamic response en
dc.subject.other Dynamics en
dc.subject.other Elasticity en
dc.subject.other Functions en
dc.subject.other Integration en
dc.subject.other Membranes en
dc.subject.other Partial differential equations en
dc.subject.other Poisson equation en
dc.subject.other Heterogenous membranes en
dc.subject.other Boundary element method en
dc.title Nonlinear dynamic analysis of heterogeneous orthotropic membranes by the analog equation method en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0955-7997(02)00089-9 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0955-7997(02)00089-9 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In this paper, the analog equation method, a BEM-based method, is employed to analyze the dynamic response of flat heterogeneous orthotropic membranes of arbitrary shape, undergoing large deflections. The problem is formulated in terms of the three displacement components. Due to the heterogeneity of the membrane, the elastic constants are position dependent and consequently the coefficients of the partial differential equations governing the dynamic equilibrium of the membrane are variable. Using the concept of the analog equation, the three-coupled nonlinear second order hyperbolic partial differential equations are replaced with three uncoupled Poisson's quasi-static equations with fictitious time dependent sources. The fictitious sources are represented by radial basis functions series and are established using a BEM-based procedure. Both free and forced vibrations are considered. Membranes of various shapes are analyzed to illustrate the merits of the method as well as its applicability, efficiency and accuracy. The proposed method is boundary-only in the sense that the discretization and the integration are restricted on the boundary. Therefore, it maintains all the advantages of the pyre BEM. (C) 2002 Elsevier Science Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Engineering Analysis with Boundary Elements en
dc.identifier.doi 10.1016/S0955-7997(02)00089-9 en
dc.identifier.isi ISI:000180996900005 en
dc.identifier.volume 27 en
dc.identifier.issue 2 en
dc.identifier.spage 115 en
dc.identifier.epage 124 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής