HEAL DSpace

Nonlinear dynamic analysis of shells with the triangular element TRIC

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Argyris, J en
dc.contributor.author Papadrakakis, M en
dc.contributor.author Mouroutis, ZS en
dc.date.accessioned 2014-03-01T01:19:19Z
dc.date.available 2014-03-01T01:19:19Z
dc.date.issued 2003 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15425
dc.subject Computational Efficiency en
dc.subject Nonlinear Dynamic Analysis en
dc.subject Nonlinear Dynamics en
dc.subject Rigid Body en
dc.subject Satisfiability en
dc.subject Shear Deformation en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Kinematics en
dc.subject.other Matrix algebra en
dc.subject.other Problem solving en
dc.subject.other Shear deformation en
dc.subject.other Shear-locking en
dc.subject.other Shells (structures) en
dc.subject.other dynamic analysis en
dc.title Nonlinear dynamic analysis of shells with the triangular element TRIC en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0045-7825(03)00315-3 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0045-7825(03)00315-3 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract TRIC is a facet triangular shell element, which is based on the natural mode method. It has been shown that the TRIC shell element satisfies the individual element test and in the framework of the nonconsistent formulation the convergence requirements are fulfilled, while it has been proved to be very efficient in linear and nonlinear static problems. Moreover, another major advantage in the formulation of this element is the incorporation of the transverse shear deformations in a way that defies the shear-locking phenomenon. In this work the derivation of the consistent and lumped mass matrices of the TRIC element is presented so that it can be used in linear and nonlinear dynamic problems. Both translational and rotational inertia are included in the consistent mass matrix, which is conceived, using kinematical and geometrical arguments consistent with the assumed natural rigid body and straining modes of the element. All the kinematical and geometrical arguments that are invoked for the derivation of the consistent mass matrix are briefly presented. Moreover, two formulations of the lumped mass matrix of TRIC are derived. The first formulation is based entirely on geometrical considerations whereas the second is based on lumping the consistent mass matrix of TRIC. Finally, the element's robustness and accuracy will be shown by applying it to properly selected benchmark examples of nonlinear shell dynamics, while its computational efficiency will be demonstrated by comparing the CPU performance of the element with the other available shell elements. (C) 2003 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/S0045-7825(03)00315-3 en
dc.identifier.isi ISI:000184194400010 en
dc.identifier.volume 192 en
dc.identifier.issue 26-27 en
dc.identifier.spage 3005 en
dc.identifier.epage 3038 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής