dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:19:20Z |
|
dc.date.available |
2014-03-01T01:19:20Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0253-4142 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15429 |
|
dc.subject |
Convex and nonconvex problems |
en |
dc.subject |
Hartman condition |
en |
dc.subject |
Leray-Schauder alternative |
en |
dc.subject |
Maximal monotone operator |
en |
dc.subject |
Pseudomonotone operator |
en |
dc.subject |
Vector p-Laplacian |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Hartman condition |
en |
dc.subject.other |
Leray-Schauder alternative |
en |
dc.subject.other |
Maximal monotone operator |
en |
dc.subject.other |
Boundary value problems |
en |
dc.title |
Nonlinear second-order multivalued boundary value problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02829608 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02829608 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper we study nonlinear second-order differential inclusions involv- ing the ordinary vector p-Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain solutions for both the 'convex' and 'nonconvex' problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our result. |
en |
heal.publisher |
INDIAN ACADEMY SCIENCES |
en |
heal.journalName |
Proceedings of the Indian Academy of Sciences: Mathematical Sciences |
en |
dc.identifier.doi |
10.1007/BF02829608 |
en |
dc.identifier.isi |
ISI:000185414900006 |
en |
dc.identifier.volume |
113 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
293 |
en |
dc.identifier.epage |
319 |
en |