dc.contributor.author |
Argyropoulos, E |
en |
dc.contributor.author |
Gintides, D |
en |
dc.contributor.author |
Kiriaki, K |
en |
dc.date.accessioned |
2014-03-01T01:19:21Z |
|
dc.date.available |
2014-03-01T01:19:21Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
1446-1811 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15443 |
|
dc.subject |
Boundary Integral Equation |
en |
dc.subject |
Condition Number |
en |
dc.subject |
Fundamental Solution |
en |
dc.subject |
Linear Elasticity |
en |
dc.subject |
Neumann Problem |
en |
dc.subject |
Optimality Condition |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
EXTERIOR |
en |
dc.title |
On the condition number of integral equations in linear elasticity using the modified green's function |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S1446181100008129 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S1446181100008129 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this work the modified Green's function technique for an exterior Dirichlet and Neumann problem in linear elasticity is investigated. We introduce a modification of the fundamental solution in order to remove the lack of uniqueness for the solution of the boundary integral equations describing the problems, and to simultaneously minimise their condition number. In view of this procedure the cases of the sphere and perturbations of the sphere are examined. Numerical results that demonstrate the effect of increasing the number of coefficients in the modification on the optimal condition number are also presented. © Australian Mathematical Society 2003. |
en |
heal.publisher |
AUSTRALIAN MATHEMATICS PUBL ASSOC INC |
en |
heal.journalName |
ANZIAM Journal |
en |
dc.identifier.doi |
10.1017/S1446181100008129 |
en |
dc.identifier.isi |
ISI:000181742400008 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
431 |
en |
dc.identifier.epage |
436 |
en |