dc.contributor.author |
Denkowski, Z |
en |
dc.contributor.author |
Migorski, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:19:21Z |
|
dc.date.available |
2014-03-01T01:19:21Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15444 |
|
dc.subject |
Coercive operator |
en |
dc.subject |
Existence theorem |
en |
dc.subject |
G-convergence |
en |
dc.subject |
Maximal monotone operator |
en |
dc.subject |
Minimax problem |
en |
dc.subject |
Multivalued operator |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Minimax problem |
en |
dc.subject.other |
Many valued logics |
en |
dc.title |
On the convergence of solutions of multivalued parabolic equations and applications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0362-546X(03)00093-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0362-546X(03)00093-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper we examine parametric nonlinear parabolic problems with multivalued terms. Using a general notion of G-convergence for such operators we prove a convergence theorem for the solution sets of the corresponding Cauchy-Dirichlet problem. We also study a related minimax control problem. (C) 2003 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/S0362-546X(03)00093-2 |
en |
dc.identifier.isi |
ISI:000183683900005 |
en |
dc.identifier.volume |
54 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
667 |
en |
dc.identifier.epage |
682 |
en |