dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Panayotounakou, ND |
en |
dc.contributor.author |
Vakakis, AF |
en |
dc.date.accessioned |
2014-03-01T01:19:21Z |
|
dc.date.available |
2014-03-01T01:19:21Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0044-2267 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15448 |
|
dc.subject |
Asymptotic solutions |
en |
dc.subject |
Van der Pol oscillator |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
COUPLED VANDERPOL OSCILLATORS |
en |
dc.title |
On the lack of analytic solutions of the Van der Pol oscillator |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/zamm.200310040 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/zamm.200310040 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this work it is shown that by a series of transformations the classical Van der Pol oscillator can be exactly reduced to Abel's equations of the second kind. The absence of exact analytic solutions in terms of known (tabulated) functions of the reduced equations leads to the conclusion that there are no exact solutions of the Van der Pol oscillator in terms of known (tabulated) functions. In the limits or small or large values of the parameter E the reduced equations are amenable to asymptotic analysis. For the case of large values of the parameter (relaxation oscillations) an analytic solution to the problem is provided that is exact up to O(epsilon(-2)). (C) 2003 WILEY-VCH Vertag GmbH & Co. KGaA, Weinheim. |
en |
heal.publisher |
WILEY-V C H VERLAG GMBH |
en |
heal.journalName |
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik |
en |
dc.identifier.doi |
10.1002/zamm.200310040 |
en |
dc.identifier.isi |
ISI:000185308700005 |
en |
dc.identifier.volume |
83 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
611 |
en |
dc.identifier.epage |
615 |
en |