dc.contributor.author |
Vaggelatou, E |
en |
dc.date.accessioned |
2014-03-01T01:19:22Z |
|
dc.date.available |
2014-03-01T01:19:22Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0167-7152 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15449 |
|
dc.subject |
Erdös-Renyi type law |
en |
dc.subject |
Extreme value distribution |
en |
dc.subject |
Longest run |
en |
dc.subject |
Multi-state trials |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
PATTERNS |
en |
dc.subject.other |
SEQUENCE |
en |
dc.title |
On the length of the longest run in a multi-state Markov chain |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-7152(02)00432-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-7152(02)00432-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Let {X-a}(ais an element ofz) be an irreducible and aperiodic Markov chain on a finite state space S = {0, 1,...,r}, r greater than or equal to 1. Denote by L-n the length of the longest run of consecutive i's, for i = that occurs in the sequence X-1,...,X-n. In this work, we extend a result of Goncharov (Amer. Math. Soc. Transl. 19 (1943) 1) which concerned a limit law for L-n in sequences of 0-1 i.i.d. trials. Moreover, it is shown that L-n has approximately an extreme value distribution along a certain subsequence. Finally, a weak version of an Erdos-Renyi type law for L-n is proved. (C) 2003 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Statistics and Probability Letters |
en |
dc.identifier.doi |
10.1016/S0167-7152(02)00432-7 |
en |
dc.identifier.isi |
ISI:000182152200001 |
en |
dc.identifier.volume |
62 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
211 |
en |
dc.identifier.epage |
221 |
en |