dc.contributor.author |
Koras, GD |
en |
dc.contributor.author |
Kaklis, PD |
en |
dc.date.accessioned |
2014-03-01T01:19:22Z |
|
dc.date.available |
2014-03-01T01:19:22Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0167-8396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15450 |
|
dc.subject |
Control point |
en |
dc.subject |
Local convexity |
en |
dc.subject |
Parametric surface |
en |
dc.subject |
Shape preservation |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Computational geometry |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Local convexity |
en |
dc.subject.other |
Shape preservation |
en |
dc.subject.other |
Computer aided design |
en |
dc.title |
On the local shape effect of a moving control point |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cagd.2003.07.010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cagd.2003.07.010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper we prove that the domain, where a control point of a parametric surface is permitted to move in order to ascertain local convexity at a finite set of parametric points, is a convex polyhedron. This result can be exploited for fine surface design, which is herein illustrated for two test surfaces. (C) 2003 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Aided Geometric Design |
en |
dc.identifier.doi |
10.1016/j.cagd.2003.07.010 |
en |
dc.identifier.isi |
ISI:000187246400005 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
8-9 |
en |
dc.identifier.spage |
549 |
en |
dc.identifier.epage |
562 |
en |