HEAL DSpace

On the reduction of some second-order nonlinear ODEs in physics and mechanics to first-order nonlinear integrodifferential and Abel's classes of equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sotiropoulou, AB en
dc.contributor.author Panayotounakos, DE en
dc.date.accessioned 2014-03-01T01:19:23Z
dc.date.available 2014-03-01T01:19:23Z
dc.date.issued 2003 en
dc.identifier.issn 0167-8442 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15452
dc.subject Asymptotic solutions en
dc.subject Cubic nonlinearities en
dc.subject Nonlinear ordinary differential equations en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Mathematical transformations en
dc.subject.other Nonlinear systems en
dc.subject.other Ordinary differential equations en
dc.subject.other Stiffness en
dc.subject.other Nonlinear oscillations en
dc.subject.other Crack propagation en
dc.subject.other fracture mechanics en
dc.subject.other numerical method en
dc.title On the reduction of some second-order nonlinear ODEs in physics and mechanics to first-order nonlinear integrodifferential and Abel's classes of equations en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.tafmec.2003.09.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.tafmec.2003.09.001 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Second-order ordinary differential equations (ODEs) with strong nonlinear stiffness terms (cubic nonlinearities) governing wave motions, dynamic crack propagations, nonlinear oscillations etc. in physics and nonlinear mechanics are analyzed. Selecting as guide line a second-order nonlinear ODE of the form of the forced Duffing equation and using admissible functional transformations it is possible to reduce it to an equivalent first-order nonlinear integrodifferential equation. The reduced equation is exact. In the limits of small or large values of the parameter characterizing this nonlinear problem, it is shown that further reductions lead to a nonlinear ODE of the Abet classes. Taking into account the known exact analytic solutions of this equivalent equation it is proved that there does not exist an exact analytic solution of this type of equations. However, in cases when convenient functional relations connecting all parameters of the corresponding null equation and the characteristics of the driving force exist, approximate analytic solutions to the problem under consideration are provided. (C) 2003 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Theoretical and Applied Fracture Mechanics en
dc.identifier.doi 10.1016/j.tafmec.2003.09.001 en
dc.identifier.isi ISI:000186833200005 en
dc.identifier.volume 40 en
dc.identifier.issue 3 en
dc.identifier.spage 255 en
dc.identifier.epage 270 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής