dc.contributor.author |
Yang, B |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:19:23Z |
|
dc.date.available |
2014-03-01T01:19:23Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
1331-4343 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15457 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0242287807&partnerID=40&md5=0736e262e96b88a334cf02956957a090 |
en |
dc.relation.uri |
http://files.ele-math.com/abstracts/mia-06-58-abs.pdf |
en |
dc.subject |
β function |
en |
dc.subject |
Cauchy's inequality |
en |
dc.subject |
Hilbert's inequality |
en |
dc.subject |
Hölder's inequality |
en |
dc.subject |
Weight coefficient |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
INTEGRAL INEQUALITY |
en |
dc.title |
On the way of weight coefficient and research for the Hilbert-type inequalities |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The Hilbert-type inequalities are certain significant weight inequalities, which play an important role in mathematical analysis and its applications. In this paper, we introduce the way of weight coefficient and consider its applications to the Hilbert-type inequalities. We will summarize how to use the way of weight coefficient to obtain some new improvements and generalizations of the Hilbert-type inequalities. |
en |
heal.publisher |
ELEMENT |
en |
heal.journalName |
Mathematical Inequalities and Applications |
en |
dc.identifier.isi |
ISI:000186163200006 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
625 |
en |
dc.identifier.epage |
658 |
en |