HEAL DSpace

On-line RBFNN based identification of rapidly time-varying nonlinear systems with optimal structure-adaptation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Apostolikas, G en
dc.contributor.author Tzafestas, S en
dc.date.accessioned 2014-03-01T01:19:23Z
dc.date.available 2014-03-01T01:19:23Z
dc.date.issued 2003 en
dc.identifier.issn 0378-4754 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15462
dc.subject Adaptive systems modeling en
dc.subject Radial basis function networks en
dc.subject Time-varying system tracking en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Mathematics, Applied en
dc.subject.other Algorithms en
dc.subject.other Computer simulation en
dc.subject.other Nonlinear systems en
dc.subject.other Online systems en
dc.subject.other Time varying systems en
dc.subject.other Time varying system tracking en
dc.subject.other Radial basis function networks en
dc.title On-line RBFNN based identification of rapidly time-varying nonlinear systems with optimal structure-adaptation en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0378-4754(02)00159-3 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0378-4754(02)00159-3 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract This paper presents an adaptive RBF network for the on-line identification and tracking of rapidly-changing time-varying nonlinear systems. The proposed algorithm is capable of maintaining the accuracy of learned patterns even when a large number of aged patterns are replaced by new ones through the adaptation process. Moreover, the algorithm exhibits a strong learning capacity with instant embodiment of new data which makes it suitable for tracking of fast-changing systems. However, the accuracy and speed in the adaptation is balanced by the computational cost which increases with the square of the number of the radial basis functions, resulting in a computational expensive, but still practically feasible, algorithm. The simulation results show the effectiveness (in terms of degradation of learned patterns and learning capacity) of this architecture for adaptive modeling. (C) 2002 Published by Elsevier Science B.V. on behalf of IMACS. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Mathematics and Computers in Simulation en
dc.identifier.doi 10.1016/S0378-4754(02)00159-3 en
dc.identifier.isi ISI:000182472200001 en
dc.identifier.volume 63 en
dc.identifier.issue 1 en
dc.identifier.spage 1 en
dc.identifier.epage 13 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής