dc.contributor.author |
Apostolikas, G |
en |
dc.contributor.author |
Tzafestas, S |
en |
dc.date.accessioned |
2014-03-01T01:19:23Z |
|
dc.date.available |
2014-03-01T01:19:23Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0378-4754 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15462 |
|
dc.subject |
Adaptive systems modeling |
en |
dc.subject |
Radial basis function networks |
en |
dc.subject |
Time-varying system tracking |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Online systems |
en |
dc.subject.other |
Time varying systems |
en |
dc.subject.other |
Time varying system tracking |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.title |
On-line RBFNN based identification of rapidly time-varying nonlinear systems with optimal structure-adaptation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0378-4754(02)00159-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0378-4754(02)00159-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
This paper presents an adaptive RBF network for the on-line identification and tracking of rapidly-changing time-varying nonlinear systems. The proposed algorithm is capable of maintaining the accuracy of learned patterns even when a large number of aged patterns are replaced by new ones through the adaptation process. Moreover, the algorithm exhibits a strong learning capacity with instant embodiment of new data which makes it suitable for tracking of fast-changing systems. However, the accuracy and speed in the adaptation is balanced by the computational cost which increases with the square of the number of the radial basis functions, resulting in a computational expensive, but still practically feasible, algorithm. The simulation results show the effectiveness (in terms of degradation of learned patterns and learning capacity) of this architecture for adaptive modeling. (C) 2002 Published by Elsevier Science B.V. on behalf of IMACS. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Mathematics and Computers in Simulation |
en |
dc.identifier.doi |
10.1016/S0378-4754(02)00159-3 |
en |
dc.identifier.isi |
ISI:000182472200001 |
en |
dc.identifier.volume |
63 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
13 |
en |