dc.contributor.author |
Kechribaris, CN |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.date.accessioned |
2014-03-01T01:19:29Z |
|
dc.date.available |
2014-03-01T01:19:29Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0920-5071 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15520 |
|
dc.subject |
Nonlinear Optimization |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Biomedical engineering |
en |
dc.subject.other |
Dielectric materials |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Medical imaging |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Permittivity |
en |
dc.subject.other |
Spurious signal noise |
en |
dc.subject.other |
Tissue |
en |
dc.subject.other |
Tomography |
en |
dc.subject.other |
Diffraction tomography |
en |
dc.subject.other |
Inverse scattering |
en |
dc.subject.other |
Nonlinear optimization |
en |
dc.subject.other |
Permittivity distribution |
en |
dc.subject.other |
Rytov approximation |
en |
dc.subject.other |
Electromagnetic wave scattering |
en |
dc.title |
Reconstruction of two-dimensional permittivity distribution using an improved Rytov approximation and nonlinear optimization |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1163/156939303322235789 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1163/156939303322235789 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper, a spatial-domain method for the reconstruction of the complex permittivity profile of two-dimensional large size-low, contrast objects is presented. The unknown dielectric scatterer is described as a superposition of step functions placed on a rectangular grid with unknown weighting coefficients. Furthermore, an improved Rytov, approximation is developed for the description of the unknown internal field in the scattering integral equation. The inverse scattering problem is then solved by minimizing the squared error between measured and predicted values for the scattering amplitude. The efficiency of the direct and inverse scattering technique is validated by using synthetic scattering amplitude data, and a study of noise effects is undertaken. It is shown that significant improvement over conventional diffraction tomography methods based on the first-order Rytov approximation is possible with the proposed technique, and it can be efficiently used for soft tissue imaging in biomedical engineering applications. |
en |
heal.publisher |
VSP BV |
en |
heal.journalName |
Journal of Electromagnetic Waves and Applications |
en |
dc.identifier.doi |
10.1163/156939303322235789 |
en |
dc.identifier.isi |
ISI:000183322400002 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
183 |
en |
dc.identifier.epage |
207 |
en |