dc.contributor.author |
Papageorgiou, G |
en |
dc.contributor.author |
Tsitouras, Ch |
en |
dc.date.accessioned |
2014-03-01T01:19:30Z |
|
dc.date.available |
2014-03-01T01:19:30Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0020-7160 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15536 |
|
dc.subject |
Order conditions |
en |
dc.subject |
RK5(4) pairs |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Order conditions |
en |
dc.subject.other |
RK5(4) pairs |
en |
dc.subject.other |
Runge Kutta methods |
en |
dc.title |
Runge-Kutta pairs for scalar autonomous initial value problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00207160304669 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00207160304669 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
We present the equations of condition up to sixth order for Runge-Kutta (RK) methods, when integrating scalar autonomous problems. Two RK pairs of orders 5(4) are derived. The first at a cost of only five stages per step, while the other having an extremely small principal truncation error. Numerical tests show the superiority of the new pairs over traditional ones. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
International Journal of Computer Mathematics |
en |
dc.identifier.doi |
10.1080/00207160304669 |
en |
dc.identifier.isi |
ISI:000180702600006 |
en |
dc.identifier.volume |
80 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
201 |
en |
dc.identifier.epage |
209 |
en |