HEAL DSpace

Setting up of a probabilistic neural network for sensor fault detection including operation with component faults

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Romesis, G en
dc.contributor.author Mathioudakis, K en
dc.date.accessioned 2014-03-01T01:19:32Z
dc.date.available 2014-03-01T01:19:32Z
dc.date.issued 2003 en
dc.identifier.issn 0742-4795 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15551
dc.subject Engine Performance en
dc.subject Fault Detection en
dc.subject Fault Identification en
dc.subject Gas Turbine en
dc.subject Probabilistic Neural Network en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Engines en
dc.subject.other Gas turbines en
dc.subject.other Identification (control systems) en
dc.subject.other Mathematical models en
dc.subject.other Probability en
dc.subject.other Sensors en
dc.subject.other Spurious signal noise en
dc.subject.other Fault detection en
dc.subject.other Probabilistic neural network (PNN) en
dc.subject.other Sensor fault en
dc.subject.other Neural networks en
dc.subject.other engine en
dc.subject.other fault detection en
dc.subject.other gas turbine en
dc.subject.other neural network en
dc.subject.other performance assessment en
dc.subject.other sensor en
dc.title Setting up of a probabilistic neural network for sensor fault detection including operation with component faults en
heal.type journalArticle en
heal.identifier.primary 10.1115/1.1582493 en
heal.identifier.secondary http://dx.doi.org/10.1115/1.1582493 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract The diagnostic ability of probabilistic neural networks (PNN) for detecting sensor faults on gas turbines is examined. The structure and the features of a PNN, for sensor fault detection, are presented. It is shown that with the proposed formulation, a powerful tool for sensor fault identification is produced. A particular feature of the PNN produced is the ability to detect sensor faults even in the presence of engine component malfunction, as well as on deteriorated engines. In such situations, the size of bias that can be identified increases. The way to establish the limits of sensor bias that can be detected is presented along with results from application to test cases with realistic noise magnitudes. The diagnostic procedure proposed here is also supported by an engine performance model. The data used for setting up and testing the PNN are generated by such a model. en
heal.publisher ASME-AMER SOC MECHANICAL ENG en
heal.journalName Journal of Engineering for Gas Turbines and Power en
dc.identifier.doi 10.1115/1.1582493 en
dc.identifier.isi ISI:000185213400004 en
dc.identifier.volume 125 en
dc.identifier.issue 3 en
dc.identifier.spage 634 en
dc.identifier.epage 641 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής