dc.contributor.author |
Romesis, G |
en |
dc.contributor.author |
Mathioudakis, K |
en |
dc.date.accessioned |
2014-03-01T01:19:32Z |
|
dc.date.available |
2014-03-01T01:19:32Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0742-4795 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15551 |
|
dc.subject |
Engine Performance |
en |
dc.subject |
Fault Detection |
en |
dc.subject |
Fault Identification |
en |
dc.subject |
Gas Turbine |
en |
dc.subject |
Probabilistic Neural Network |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Engines |
en |
dc.subject.other |
Gas turbines |
en |
dc.subject.other |
Identification (control systems) |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Spurious signal noise |
en |
dc.subject.other |
Fault detection |
en |
dc.subject.other |
Probabilistic neural network (PNN) |
en |
dc.subject.other |
Sensor fault |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
engine |
en |
dc.subject.other |
fault detection |
en |
dc.subject.other |
gas turbine |
en |
dc.subject.other |
neural network |
en |
dc.subject.other |
performance assessment |
en |
dc.subject.other |
sensor |
en |
dc.title |
Setting up of a probabilistic neural network for sensor fault detection including operation with component faults |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1115/1.1582493 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1115/1.1582493 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The diagnostic ability of probabilistic neural networks (PNN) for detecting sensor faults on gas turbines is examined. The structure and the features of a PNN, for sensor fault detection, are presented. It is shown that with the proposed formulation, a powerful tool for sensor fault identification is produced. A particular feature of the PNN produced is the ability to detect sensor faults even in the presence of engine component malfunction, as well as on deteriorated engines. In such situations, the size of bias that can be identified increases. The way to establish the limits of sensor bias that can be detected is presented along with results from application to test cases with realistic noise magnitudes. The diagnostic procedure proposed here is also supported by an engine performance model. The data used for setting up and testing the PNN are generated by such a model. |
en |
heal.publisher |
ASME-AMER SOC MECHANICAL ENG |
en |
heal.journalName |
Journal of Engineering for Gas Turbines and Power |
en |
dc.identifier.doi |
10.1115/1.1582493 |
en |
dc.identifier.isi |
ISI:000185213400004 |
en |
dc.identifier.volume |
125 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
634 |
en |
dc.identifier.epage |
641 |
en |