dc.contributor.author |
Georgiou, S |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.contributor.author |
Seberry, J |
en |
dc.date.accessioned |
2014-03-01T01:19:33Z |
|
dc.date.available |
2014-03-01T01:19:33Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0381-7032 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15567 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0041573198&partnerID=40&md5=808a5d08bf0dffbc8c4e89d9585c19bb |
en |
dc.relation.uri |
http://www.informatik.uni-trier.de/~ley/db/journals/arscom/arscom68.html#GeorgiouKS03 |
en |
dc.subject |
Codes |
en |
dc.subject |
Conference matrix |
en |
dc.subject |
Construction |
en |
dc.subject |
Projective plane |
en |
dc.subject |
Self-dual |
en |
dc.subject |
Self-orthogonal |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
II CODES |
en |
dc.title |
Some results on self-orthogonal and self-dual codes |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
We use generator matrices G satisfying GG T = aI bJ over Z k to obtain linear self-orthogonal and self-dual codes. We give a new family of linear self-orthogonal codes over GF (3) and Z 4 and a new family of linear self-dual codes over GF (3): Key words and phrases: Self-orthogonal, self-dual, codes, construction, conference matrix, projective plane. |
en |
heal.publisher |
CHARLES BABBAGE RES CTR |
en |
heal.journalName |
Ars Combinatoria |
en |
dc.identifier.isi |
ISI:000184365100010 |
en |
dc.identifier.volume |
68 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
97 |
en |
dc.identifier.epage |
104 |
en |