dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:19:34Z |
|
dc.date.available |
2014-03-01T01:19:34Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15585 |
|
dc.subject |
Convex and nonconvex problems |
en |
dc.subject |
Dirichlet problem |
en |
dc.subject |
Hartman condition |
en |
dc.subject |
Maximal monotone operator |
en |
dc.subject |
Neumann problem |
en |
dc.subject |
Periodic problems |
en |
dc.subject |
Pseudomonotone operator |
en |
dc.subject |
Vector p -Laplacian |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Maximal monotone operators |
en |
dc.subject.other |
Boundary value problems |
en |
dc.title |
Strongly nonlinear multivalued boundary value problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0362-546X(02)00162-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0362-546X(02)00162-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper we study nonlinear second-order differential inclusions involving the differential operator depending on both: unknown function x and its derivative x′, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and can be applied to the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain solutions for both the ""convex"" and ""nonconvex"" problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our results. © 2002 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/S0362-546X(02)00162-1 |
en |
dc.identifier.isi |
ISI:000179666800010 |
en |
dc.identifier.volume |
52 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1219 |
en |
dc.identifier.epage |
1238 |
en |